EE141©DigitalIntegratedCircuits2ndCombinationalCircuits1第六章CMOS组合逻辑门的设计Nov9,2011EE141©DigitalIntegratedCircuits2ndCombinationalCircuits2组合逻辑与时序逻辑组合逻辑时序逻辑Output=f(In)Output=f(In,PreviousIn)CombinationalLogicCircuitOutInCombinationalLogicCircuitOutInStateEE141©DigitalIntegratedCircuits2ndCombinationalCircuits3每一时刻(除了切换期间的瞬态效应)每个门的输出通过一个低阻路径连接到在任何时候该门的输出即为该电路实现的布尔函数值(再一次忽略切换期间的瞬态效应)不同于动态电路,后者依赖把信号值暂时存放在高阻抗电路节点的电容上静态CMOS电路设计VDDorVssEE141©DigitalIntegratedCircuits2ndCombinationalCircuits4静态互补CMOSVDDF(In1,In2,…InN)In1In2InNIn1In2InNPUNPDNPMOSonlyNMOSonlyPUN(上拉网络)和PDN(下拉网络)是双通道逻辑网络EE141©DigitalIntegratedCircuits2ndCombinationalCircuits5构成PUN和PDN网络一个晶体管可以看成是一个由其栅信号控制的开关PDN由NMOS器件构成,PUN由PMOS器件构成可以推导出一组规则来实现逻辑功能互补CMOS结构的上拉和下拉网络互为对偶网络互补门本质上是反相的,只能实现与非、或非和异或门实现一个具有N个输入的逻辑门需晶体管数目2N个EE141©DigitalIntegratedCircuits2ndCombinationalCircuits6NMOS晶体管的串并联结TransistorscanbethoughtasaswitchcontrolledbyitsgatesignalNMOSswitchcloseswhenswitchcontrolinputishighNMOS逻辑规则---串联AND操作、并联OR操作EE141©DigitalIntegratedCircuits2ndCombinationalCircuits7PMOS晶体管的串并联结PMOS逻辑规则---串联NOR操作、并联NAND操作EE141©DigitalIntegratedCircuits2ndCombinationalCircuits8NMOS—下拉器件PMOS—上拉器件VDDVDD0PDN0VDDCLCLPUNVDD0VDD-VTnCLVDDVDDVDD|VTp|CLSDSDVGSSSDDVGSEE141©DigitalIntegratedCircuits2ndCombinationalCircuits9互补CMOS逻辑类型PUN和PDN是互补网络–符合DeMorgan定律–单级互补CMOS逻辑门是反相输出的–同相:需加额外反相EE141©DigitalIntegratedCircuits2ndCombinationalCircuits10ExampleGate:NANDEE141©DigitalIntegratedCircuits2ndCombinationalCircuits11ExampleGate:NOREE141©DigitalIntegratedCircuits2ndCombinationalCircuits12构成一个复合门C(a)pull-downnetworkSN1SN4SN2SN3DFFADBCDFABC(b)Derivingthepull-upnetworkhierarchicallybyidentifyingsub-netsDAABCVDDVDDB(c)completegateEE141©DigitalIntegratedCircuits2ndCombinationalCircuits13复合CMOS门OUT=D+A•(B+C)DABCDABCEE141©DigitalIntegratedCircuits2ndCombinationalCircuits14EE141单元设计标准单元通用逻辑可综合等高,宽度可变数据通路单元规则、结构化逻辑(算术运算)单元中包含互连线固定高度和宽度数字集成电路14组合逻辑电路EE141©DigitalIntegratedCircuits2ndCombinationalCircuits15标准单元不包含维数信息表示了晶体管间的相对位置EE141©DigitalIntegratedCircuits2ndCombinationalCircuits16标准单元EE141©DigitalIntegratedCircuits2ndCombinationalCircuits17棍棒图不包含维数信息表示了晶体管间的相对位置InOutVDDGNDInverterAOutVDDGNDBNAND2EE141©DigitalIntegratedCircuits2ndCombinationalCircuits18棍棒图CABX=C•(A+B)BACijABCEE141©DigitalIntegratedCircuits2ndCombinationalCircuits19C•(A+B)的两个版本XCABABCXVDDGNDVDDGNDEE141©DigitalIntegratedCircuits2ndCombinationalCircuits20棍棒图逻辑图CABX=C•(A+B)BACijjVDDXXiGNDABCPUNPDNABC逻辑图EE141©DigitalIntegratedCircuits2ndCombinationalCircuits21X逻辑图CABX=(A+B)•(C+D)BADVDDXXGNDABCPUNPDNCDDABCDEE141©DigitalIntegratedCircuits2ndCombinationalCircuits22例:x=ab+cdGNDxabcdVDDxGNDxabcdVDDx(a)Logicgraphsfor(ab+cd)(b)EulerPaths{abcd}acdxVDDGND(c)stickdiagramforordering{abcd}bEE141©DigitalIntegratedCircuits2ndCombinationalCircuits23互补CMOS组合逻辑特性静态特性高噪声容限(NM)VOH=VDD,VOL=VSS(GND)无静态功耗稳态时,VDD和VSS(GND)间无直流通路动态特性上升、下降时延接近上下网络有适当的尺寸比例EE141©DigitalIntegratedCircuits2ndCombinationalCircuits24CMOS特性满电源幅度开关;高噪声容限电平幅度与器件尺寸无关;ratioless稳态时总有到VDD或GND之间的通路;低输出阻抗高输入阻抗;输入稳态电流几乎为零电源与地之间无直接通路;无静态功耗传输延时是负载电容和晶体管电阻的函数EE141©DigitalIntegratedCircuits2ndCombinationalCircuits25开关延时模型AReqARpARpARnCLACLBRnARpBRpARnCintBRpARpARnBRnCLCintNAND2INVNOR2EE141©DigitalIntegratedCircuits2ndCombinationalCircuits26输入波形对延时的影响延时与输入波形有关输出高到低的转换A=B=0-1–延时:0.69(2Rn)CLA=1,B=0-1-延时:0.69(2Rn)CLA=0-1,B=1–延时:0.69(2Rn)CL–实际上单A跳变比单B跳变快CLARnARpBRpBRnCintEE141©DigitalIntegratedCircuits2ndCombinationalCircuits27输入波形对延时的影响延时与输入波形有关输出低到高的转换A=B=1-0–延时:0.69Rp/2CLA=1,B=1-0-延时:0.69RpCLA=1-0,B=1–延时:0.69RpCL–实际上单A跳变比单B跳变快CLARnARpBRpBRnCintEE141©DigitalIntegratedCircuits2ndCombinationalCircuits28延时对输入波形的依赖-0.500.511.522.530100200300400A=B=10B=1,A=10B=10,A=1time[ps]Voltage[V]InputDataPatternDelay(psec)A=B=0169A=1,B=0162A=01,B=150A=B=1035A=1,B=1076A=10,B=157NMOS=0.5m/0.25mPMOS=0.75m/0.25mCL=100fFEE141©DigitalIntegratedCircuits2ndCombinationalCircuits29扇入的考虑DCBADCBACLC3C2C1分布RC模型(Elmore延时)tpHL=0.69Reqn(C1+2C2+3C3+4CL)传输延时随扇入迅速恶化-最坏情况成平方关系-电阻电容同时起作用EE141©DigitalIntegratedCircuits2ndCombinationalCircuits30tp:扇入的函数tpLHtp(psec)fan-in避免扇入大于4的门025050075010001250246810121416tpHL平方线性tptpLHEE141©DigitalIntegratedCircuits2ndCombinationalCircuits31tp扇出的函数246810121416tpNOR2tp(psec)eff.fan-out所有的门具有相同驱动电流tpNAND2tpINV斜率是驱动力的函数EE141©DigitalIntegratedCircuits2ndCombinationalCircuits32tp:扇入和扇出的函数扇入:平方源于电容和电阻的增加扇出:每个额外扇出增加负载CLEE141©DigitalIntegratedCircuits2ndCombinationalCircuits33复杂门快速设计1晶体管尺寸规则只要扇出电容为主渐进尺寸规则InNCLC3C2C1In1In2In3M1M2M3MN分布RC线M1M2M3…MN(最接近输出最小)使R1R2R3…RNEE141©DigitalIntegratedCircuits2ndCombinationalCircuits34复杂门快速设计2晶体管排序C2C1In1In2In3M1M2M3CLC2C1In3In2In1M1M2M3CLcriticalpathcriticalpath放电101放电放电1延时由CL,C1andC2的放电时间决定延时由CL的放电时间决定1101放电放电结束放电结束EE141©DigitalIntegratedCircuits2ndCombinationalCircuits35复杂门快速设计3不同的逻辑结构F=ABCDEFGHEE141©DigitalIntegratedCircuits2ndCombinationalCircuits36复杂门快速设计4插入缓冲器将扇入和扇出隔离开CLCLEE141©DigitalIntegratedCircuits2ndCombinationalCircuits37EE141晶体管尺寸规则假定典型p/n管比例为2/1—并联保持(考虑单个跳变;同时跳变时电阻,并联速度更快)—串联加倍(考虑同时跳变时,电阻