古往今来的数学大家古有高斯、祖冲之、费马,今有华罗庚、苏步青、陈景润。不管历史还是现在,国内还是国外,这些著名数学家们的故事一直激励着我们前进,激发着我们学习数学的激情。现在就让我给大家讲一讲这些数学大家的故事吧!数学王子高斯1787年,在德国一所小学的三年级课堂里,数学老师出了一道计算题:1+2+3+4+5+…+98+99+100。这道题让三年级的小同学来做,是一种考验。不料,老师刚说完题目,班级里的一位学生,名叫高斯,就把他写好答案的小石板交上去了,解答的方法更使老师惊讶不已。高斯把这100个数从两头往中间,一边取一个,配起对来,1和100,2和99,3和98,…,共计配成50对,每一对两个数相加都等于101,因而原式=101×50=5050。当年只有9岁的高斯,家境贫寒,居然这样勤于动脑,善于动脑,使老师无比欣慰和深受感动。后来高斯继续勤奋学习,刻苦钻研,在数学、天文学和物理学中作出许许多多重大贡献,被称为“数学家之王”,和阿基米德、牛顿齐名。高斯是数学史上一颗光芒永恒的天王巨星。祖冲之祖冲之是我国南北朝人,他在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以径一周三做为圆周率,这就是古率.后来发现古率误差太大,圆周率应是圆径一而周三有余,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--割圆术,求得π=3.14,祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的割圆术方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做祖率.祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.费马的数学情缘话说在300年前的法国,有一个地方议会的议员名叫费马(PierreFermat1601—1665)。这人是律师出身,闲来无事不喜欢莺歌燕语,或者作围城之战,或者信步在庭院里练武。可以说是一个喜欢安静生活,不想追逐权利,淡泊功名的人。他懂几种外国语文,有时就用希腊、拉丁或者西班牙文写写诗词自我朗诵消遣。但是他最喜欢的玩意儿是搞数学和作一点科学研究,有时他把所得到的结果写信给在远方有同样兴趣的朋友,有时就把自己的心得写在数学书的空白处。当时还没有出现数学杂志可以让他发表他的研究心得。在1621年时,丢番图的那本“算术”书从希腊文翻译成法文在法国出版,费马买到了这书后,对于数论的问题开始发生了兴趣。在公余之后,就对一些希腊数学家的问题研究和推广。在丢番图的书里有一部分是讨论x2+y2=z2的整数解的问题。费马在这部份的底页上,写了几行字:“相反地,要把一个立方数分为两个立方数,一个四次方数分为两个四次方数。一般地,把一个大于2次方的乘方数分为同样指数的两个乘方数,都是不可能的;我确实发现了这个奇妙的证明,因为这里的篇幅不够,我不能够写在这个底页上。”好,我们现在把这段文字用代数方程写下来,看看是什么样子:方程xn+yn=zn对于不等于零的正整数x,y,z,当n大于2时,是没有解的。这个结果数学家称为费马大定理或者费马最后定理(Fermat’sLastTheorem)。在数学中一个命题当人们可以证明它是对的被称为定理。可是以上的命题到现在三百多年了,没有人证明它是对或者错,而叫着“费马大定理”这的确是奇怪的地方。这个结果数学家称为费马大定理或者费马最后定理(Fermat’sLastTheorem)。在数学中一个命题当人们可以证明它是对的被称为定理。可是以上的命题到现在三百多年了,没有人证明它是对或者错,而叫着“费马大定理”这的确是奇怪的地方。华罗庚1930年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。”熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。华罗庚从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。华罗庚几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。”华罗庚没有拿到博士学位。在剑桥的两年内,他写了20篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。陈景润1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。为了报达母校,他来到了这所中学为同学们讲授数学课。一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学家欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。陈景润它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。因此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。谢谢欣赏制作组:15-5组