直角三角形与勾股定理一、选择题1.(2016·四川达州·3分)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.【考点】勾股定理的应用.【分析】从点A,B,C,D中任取三点,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选D.2.(2016·广东广州)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于D,连接CD,CD=()A、3B、4C、4.8D、5图2DACEB[难易]中等[考点]勾股定理及逆定理,中位线定理,中垂线的性质[解析]因为AB=10,AC=8,BC=8,由勾股定理的逆定理可得三角形ABC为直角三角形,因为DE为AC边的中垂线,所以DE与AC垂直,AE=CE=4,所以DE为三角形ABC的中位线,所以DE= 12BC=3,再根据勾股定理求出CD=5[参考答案]D3.(2016年浙江省台州市)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.【考点】勾股定理;实数与数轴.【分析】直接利用勾股定理得出OC的长,进而得出答案.【解答】解:如图所示:连接OC,由题意可得:OB=2,BC=1,则AC==,故点M对应的数是:.故选:B.4.(2016·山东烟台)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.5.(2016.山东省威海市,3分)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【考点】矩形的性质;翻折变换(折叠问题).【分析】连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.6.(2016·江苏连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86B.64C.54D.48【分析】分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.同理,得出S4、S5、S6的关系.【解答】解:如图1,S1=AC2,S2=BC2,S3=AB2.∵AB2=AC2+BC2,∴S1+S2=AC2+BC2=AB2=S3,如图2,S4=S5+S6,∴S3+S4=16+45+11+14=86.故选A.【点评】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角7.(2016·江苏南京)下列长度的三条线段能组成钝角三角形的是A.3,4,4B.3,4,5C.3,4,6D.3,4,7答案:C考点:构成三角形的条件,勾股定理的应用,钝角三角形的判断。解析:由两边之和大于第三边,可排除D;由勾股定理:222abc,当最长边比斜边c更长时,最大角为钝角,即满足222abc,所以,选C。8.(2016·江苏省扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6B.3C.2.5D.2【考点】几何问题的最值.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C.9.(2016•浙江省舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1D.【考点】矩形的性质;全等三角形的判定与性质;勾股定理.【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【解答】解:过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴=3﹣DE,∴DE=,故选D.二、填空题1.(2016·湖北黄冈)如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=_______.AP(C)DEBFC(第13题)【考点】矩形的性质、图形的变换(折叠)、30°度角所对的直角边等于斜边的一半、勾股定理.【分析】根据折叠的性质,知EC=EP=2a=2DE;则∠DPE=30°,∠DEP=60°,得出∠PEF=∠CEF=21(180°-60°)=60°,从而∠PFE=30°,得出EF=2EP=4a,再勾股定理,得出FP的长.【解答】解:∵DC=3DE=3a,∴DE=a,EC=2a.根据折叠的性质,EC=EP=2a;∠PEF=∠CEF,∠EPF=∠C=90°.根据矩形的性质,∠D=90°,在Rt△DPE中,EP=2DE=2a,∴∠DPE=30°,∠DEP=60°.∴∠PEF=∠CEF=21(180°-60°)=60°.∴在Rt△EPF中,∠PFE=30°.∴EF=2EP=4a在Rt△EPF中,∠EPF=90°,EP=2a,EF=4a,∴根据勾股定理,得FP=EPEF22=3a.故答案为:3a2.(2016·四川资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.3.(2016·广东梅州)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(23,0),B(0,2),则点B2016的坐标为______________.答案:(6048,2)考点:坐标与图形的变换—旋转,规律探索,勾股定理。解析:OA=32,OB=2,由勾股定理,得:AB=52,所以,OC2=2+52+32=6,所以,B2(6,2),同理可得:B4(12,2),B6(18,2),…所以,B2016的横坐标为:10086=6048,所以,B2016(6048,2)4.(2016年浙江省温州市)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【考点】七巧板.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.5.(2016.山东省临沂市,3分)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为6.【考点】翻折变换(折叠问题).【分析】根据折叠的性质求出AF=CF,根据勾股定理得出关于CF的方程,求出CF,求出BF,根据面积公式求出即可.【解答】解:∵将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG,∴FG是AC的垂直平分线,∴AF=CF,设AF=FC=x,在Rt△ABF中,有勾股定理得:AB2+BF2=AF2,42+(8﹣x)2=x2,解得:x=5,即CF=5,BF=8﹣5=3,∴△ABF的面积为×3×4=6,故答案为:6.【点评】