第三十八章抗菌药物概论应用药物对病原体所致疾病进行预防或治疗称为化学治疗(chemotherapy),简称化疗。病原体包括病原微生物(细菌、螺旋体、衣原体、支原体、立克次体、真菌、病毒等)、寄生虫及恶性肿瘤细胞。化疗过程中所用的药物称为化疗药物,包括抗微生物药、抗寄生虫药和抗肿瘤药。抗菌药、抗真菌药、抗病毒药均属于抗微生物药。化学治疗学是研究药物、病原体和宿主之间相互作用、作用机制和作用规律的学科。理想的抗菌药应具备干扰细菌的重要功能而不影响宿主细胞的特性,研制抗菌药物时候,应努力寻找一些细菌所特有的结构(如细菌所特有的细胞壁)或功能作为药物作用的靶点,以提高药物对病原体的选择性,降低对宿主的毒性。另一方面,宿主的免疫力和防御功能是防止病原体致病或病后康复的关键因素,应用抗菌药物只是为宿主消灭病原体提供了有力的武器。使用抗菌药物时,必须注意恢复和提高宿主自身的防御功能,成分发挥药物的治疗作用。机体、抗菌药物及病原微生物的相互作用关系第一节抗菌药物的基本概念抗菌药是指能抑制或杀灭细菌,用于预防和治疗细菌性感染的药物,有些抗菌药也可用于寄生虫感染,广义的细菌还包括放线菌、衣原体、螺旋体、立克次体。抗菌药包括人工合成抗菌药(奎诺酮类等)和抗生素。抗生素是微生物(细菌、真菌和放线菌)的代谢产物,分子量较低,低浓度时能杀灭或抑制其他病原微生物。抗生素包括天然抗生素和人工半合成抗生素两类。后者是对天然抗生素进行结构改造而获得的产品。抗菌谱:抗菌药抑制或杀灭病原微生物的范围。某些抗菌药物仅作用于单一菌种或局限于一属细菌,其抗菌谱窄,如异烟肼只对抗酸分支杆菌有效。另一些药物抗菌范围广泛称之为广谱抗菌药,如四环素和氯霉素,它们不仅对革兰阳性细菌和革兰阴性细菌有抗菌作用,且对衣原体、肺炎支原体、立克次体及某些原虫等也有抑制作用。抗菌活性抗菌活性是指药物抑制或杀灭微生物的能力。一般可用体外与体内(化学实验治疗)两种方法来测定。体外药物敏感性试验(药敏试验)对临床用药具有重要意义,但也有一定的局限性。能够抑制培养基内细菌生长的最低浓度称之为最低抑菌浓度(MIC);能够杀灭培养基内细菌的最低浓度称之为最低杀菌浓度(MBC)。抑菌药是指仅有抑制微生物生长繁殖而无杀灭作用的药物,如四环素等。杀菌药这类药不仅能抑制微生物生长繁殖,而且能杀灭之,如青霉素类、氨基甙类等。化疗指数(chemotherapeuticindex)理想的化疗药物一般必须具有对宿主体内病原微生物有高度选择性的毒性,而对宿主无毒性或毒性很低,最好还能促进机体防御功能并能与其他抗菌药物联合应用消灭病原体。化疗药物的价值一般以动物半数致死量(LD50)和治疗感染动物的半数有效量(ED50)之比,或5%致死量(LD5)与95%有效量(ED95)的比来衡量。这一比例关系称为化疗指数。化疗指数愈大,表明药物的毒性愈小,疗效愈大,临床应用的价值也可能愈高。但化疗指数高者并不是绝对安全,如几无毒性的青霉素仍有引起过敏休克的可能。抗菌后效应(post-antibioticeffect,PAE):将细菌暴露于浓度高于MIC的某种抗菌药后,再去除培养基中的抗菌药,去除抗菌药后的一定时间范围内(常以小时计)细菌繁殖不能恢复正常,这种现象称为抗菌后效应或抗生素后效应。并非所有的抗菌药与细菌之间均发生PAE,但是当PAE存在时,其时程常常具有浓度依赖性。第二节抗菌药物的作用机制根据细菌的结构同志或代谢特征,抗菌药可特异性的干扰或阻断细菌所特有的某些关键性环节,从而在宿主细胞和细菌之间发挥选择性抗菌作用。1.抑制细菌细胞壁合成细菌细胞膜外是一层坚韧的细胞壁,能抗御菌体内强大的渗透压,具有保护和维持细菌正常形态的功能。细菌细胞壁主要结构成分是胞壁粘肽,由N-乙酰葡萄糖胺(GNAc)和与五肽相连的N-乙酰胞壁酸(MNAc)重复交替联结而成。胞壁粘肽的生物合成可分为胞浆内、胞浆膜与胞浆外三个阶段。胞浆膜阶段的粘肽合成可被万古霉素和杆菌肽所破坏,它们能分别抑制MNAc-五肽与脂载体结合并形成直链十肽二糖聚合物和聚合物转运至膜外受体的过程及脱磷酸反应。青霉素与头孢菌素类抗生素则能阻碍直链十肽二糖聚合物在胞浆外的交叉联接过程。青霉素等的作用靶位是胞浆膜上的青霉素结合蛋白(PBPs),表现为抑制转肽酶的转肽作用,从而阻碍了交叉联接。能阻碍细胞壁合成的抗生素可导致细菌细胞壁缺损。由于菌体内的高渗透压,在等渗环境中水分不断渗入。致使细菌膨胀、变形,在自溶酶影响下,细菌破裂溶解而死亡。2.影响胞浆膜的通透性细菌胞浆膜是由类脂质和蛋白质分子构成的一种半透膜,位于细胞壁内侧,具有物质转运、生物合成、分泌和呼吸等功能。多粘菌素类抗生素具有表面活性物质,能选择性地与细菌胞浆膜中的磷酯结合;而制霉菌素和二性霉素等多烯类抗生素则仅能与真菌胞浆膜中固醇类物质结合。它们均能使胞浆膜通透性增加,导致菌体内的蛋白质、核苷酸、氨基酸、糖和盐类等外漏,从而使细菌死亡。3.抑制蛋白质合成细菌为原核细胞,其核蛋白体为70S,由30S和50S亚基组成,哺乳动物是真核细胞,其核蛋白体为80S,由40S与60S亚基构成,因而它们的生理、生化与功能不同,抗菌药物对细菌的核蛋白体有高度的选择性毒性,而不影响哺乳动物的核蛋白体和蛋白质合成。多种抗生素能抑制细菌的蛋白质合成,但它们的作用点有所不同。①能与细菌核蛋白体50S亚基结合,使蛋白质合成呈可逆性抑制的有氯霉素、林可霉素和大环内酯类抗生素(红霉素等)。②能与核蛋白体30S亚基结合而抑菌的抗生素如四环素能阻止氨基酰tRNA向30S亚基的A位结合,从而抑制蛋白质合成。③能与30S亚基结合的杀菌药有氨基甙类抗生素(链霉素等)。它们的作用是多环节的。影响蛋白质合成的全过程,因而具有杀菌作用。4.影响叶酸及核酸代谢磺胺类与甲氧苄啶(TMP)可分别抑制二氢叶酸合成酶与二氢叶酸还原酶,妨碍叶酸代谢,最终影响核酸合成,从而抑制细菌的生长和繁殖。喹诺酮类药物能抑制DNA的合成,利福平能抑制以DNA为模板的RNA多聚酶。第三节细菌的耐药性细菌的耐药性又称抗药性,分固有耐药性(天然耐药性)与获得耐药性两种。固有耐药性是指基于药物作用机制的一种内在的耐药性,例如,氨基糖苷类药物需借助氧依赖性转运机制进入细菌内,厌氧菌缺乏此种机制而对氨基糖苷类产生固有耐药性。以下章节中所叙述的耐药性如不做特殊说明均指获得性耐药性。获得性耐药性是指某种细菌对某种抗菌药不具有固有耐药性,其耐药机制是后天获得的。例如,一般是指细菌与药物多次接触后,对药物的敏感性下降甚至消失,致使药物对耐药菌的疗效降低或无效。1.获得性耐药性的生物化学表现⑴降低外膜的通透性:细菌可通过各种途径使抗菌药物不易进入菌体,如革兰阴性杆菌的细胞外膜对青霉素G等有天然屏障作用;绿脓杆菌和其他革兰阴性杆菌细胞壁水孔或外膜非特异性通道功能改变引起细菌对一些广谱青霉素类、头孢菌素类包括某些第三代头孢菌素的耐药。⑵产生灭活酶:灭活酶有两种,一是水解酶,如β-内酰胺酶可水解青霉素或头孢菌素;二是钝化酶又称合成酶,可催化某些基团结合到抗生素的OH基或NH2基上,使抗生素失活。多数对氨基甙类抗生素耐药的革兰阴性杆菌能产生质粒介导的钝化酶,如乙酰转移酶作用于NH2基上,磷酸转移酶及核苷转移酶作用于OH基上。⑶细菌体内靶位结构的改变。⑷药物主动外排系统活性增强,使药物的排出速度大与药物的内流速度。⑸改变代谢途径:细菌对磺胺类的耐药,可由对药物具拮抗作用的底物PABA的产生增多所致;也可能通过改变对代谢物的需要等途径。2.耐药基因的转移获得性耐药可由基因突变而产生,并能垂直传递给予后代。此外,更多情况下,获得性耐药性的基因主要通过水平转移在细菌间转移,这种转移方式包括:⑴接合,细菌间通过性菌毛相互沟通,通过这种转移方式,耐药基因可在同一种属或不同种属细菌间进行传递,具有重要的临床意义。⑵转导:一般发生在相同种的细菌之间,具有一定的局限性。⑶转化:少数细菌可从周围环境中摄入裸DNA,并将其掺入到细菌染色体中去。当此DNA中含有耐药基因时,细菌转变为耐药菌。第四节抗菌药物应用的基本原则1.根据致病菌和药物特点选用抗菌药2.抗菌药的预防性应用3.抗菌药物的联合应用联合用药的目的在于:发挥药物的协同抗菌作用以提高疗效,对混合感染或未做细菌学诊断的病例扩大抗菌范围,降低药物的毒副反应,延缓或减少细菌耐药性的发生。联合用药的适应症有:①病原菌未明的严重感染;②单一抗菌药物不能控制的严重混合感染,如肠穿孔后腹膜炎的致病菌常有多种需氧菌和厌氧菌等;③单一抗菌药物不能有效控制的感染性心内膜炎或败血症;④长期用药细菌有可能产生耐药者,如结核、慢性尿路感染、慢性骨髓炎等;⑤用以减少药物毒性反应,如两性霉素B和氟胞嘧啶合用治疗深部真菌,前者用量可减少,从而减少毒性反应;⑥临床感染一般用二药联用即可,不必要三药联用或四药联用。两种抗菌药联合应用在体外或动物实验中可获得无关、相加、协同(增强)和拮抗等四种效果。抗菌药物依其作用性质可分为四大类:一类为繁殖期杀菌,如青霉素类、头孢菌素类等;二类为静止期杀菌,如氨基甙类、多粘菌素等,它们对静止期、繁殖期细菌均有杀灭作用;三类为速效抑菌,如四环素类、氯霉素类与大环内酯类抗生素等、四类为慢效抑菌剂,如磺胺类等。第一类和第二类合用常可获得协同(增强)作用,例如青霉素与链霉素或庆大霉素合用治疗肠球菌心内膜炎;青霉素破坏细菌细胞壁的完整性,有利于氨基甙类抗生素进入细胞内发挥作用。第一类与第三类合用可能出现拮抗作用。例如青霉素类与氯霉素或四环素类合用。由于后二药使蛋白质合成迅速被抑制,细菌处于静止状态,致使繁殖期杀菌的青霉素干扰细胞壁合成的作用不能充分发挥,使其抗菌活性减弱。第二类和第三类合用可获得增强或相加作用。第四类慢效抑菌药与第一类可以合用,例如,治疗流行性脑膜炎时,青霉素可以和磺胺嘧啶合用而提高疗效。4.防止抗菌药物的不合理应用:⑴病毒感染,抗菌药对病毒感染无效;⑵病因或发热原因不明,不宜用抗菌药,否则可使临床症状不典型和病原菌不易被检出;⑶皮肤粘膜等局部感染,应尽量避免局部应用抗菌药,因其易发生过敏反应和耐药菌的产生;⑷抗菌药剂量要适当,疗程应足够。剂量过小,不但无治疗作用,反易使细菌产生耐药性;剂量过大,不仅造成浪费,还会带来严重的毒副作用。疗程过短易使疾病复发或转为慢性;⑸常规性使用广谱抗菌药或新上市的药物。5.患者的其他因素与抗菌药物应用:⑴肾功能减退时,应用主要经肾排泄的药物宜减量或延长给药时间。对肾有毒的药物,如两性霉素B、万古霉素及氨基甙类等,宜避免使用。对肾功能无损害或损害不大的药物在一般情况下,可按常规给药,但要求肝功能必须正常。肾功能轻、中和重度减退的给药量分别为正常剂量的2/3~1/2,1/2~1/5和1/5~1/10。⑵肝功能障碍的影响:肝功能减退者,应避免使用或慎用氯霉素、林可霉素、红霉素、利福平、四环素类等。早产和新生儿的肝脏对氯霉素的解毒功能较低,氯霉素列为禁用。第二十九章-内酰胺类抗生素β-内酰胺类抗生素(β-lactams)系指化学结构中具有β-内酰胺环的一大类抗生素,包括临床最常用的青霉素与头孢菌素,以及新发展的头霉素类、硫霉素类、单环β-内酰胺类等其他非典型β-内酰胺类抗生素。此类抗生素具有杀菌活性强、毒性低、适应症广及临床疗效好的优点。第一节分类、抗菌作用机制和耐药机制㈠青霉素类按抗菌谱和耐药性分为5类:1.窄谱青霉素类以注射用青霉素G和口服用青霉素V为代表。易透过革兰氏阳性菌胞壁粘肽层,但它们不能透过革兰氏阴性菌糖蛋白磷脂外膜,因而属窄谱的,仅对革兰氏阳性菌有效。2.耐酶青霉素类以注射用甲氧西林和口服、注射用氯唑西林、氟氯西林为代表。3.广谱青霉素类以注射、口服用氨苄西林口服用阿莫西林为代表。能适度透过革兰阳性菌的胞壁粘肽层,对革兰阴性菌的外膜透过性则很好,因而是广谱抗菌药4.抗绿脓杆菌广谱青霉素类以注射用羧苄西林、哌拉西林为代表5.革兰氏阴性菌青霉素类以注射用美西林和口服用匹美西林为代表㈡头孢菌素类按抗菌谱、耐药性和肾毒性分为一、二、三、四