第八节正弦定理和余弦定理的应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.授课提示:对应学生用书第69页[知识梳理]实际应用中的常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫作仰角,目标视线在水平视线下方的叫作俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫作方位角.方位角的范围是(0°,360°)方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度例:(1)北偏东m°:(2)南偏西n°:坡角坡面与水平面的夹角设坡角为α,坡度为i,则i=hl=坡度坡面的垂直高度h和水平宽度l的比tan_α[自主诊断]1.如图,设A,B两点在河的两岸,一测量者在A的同侧,选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为()A.502mB.503mC.252mD.2522m解析:由正弦定理得AB=AC·sin∠ACBsinB=50×2212=502(m).答案:A2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.102海里B.103海里C.203海里D.202海里解析:如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin30°=ABsin45°,解得BC=102(海里).答案:A3.如图所示,D,C,B三点在地面的同一直线上,DC=a,从C,D两点测得A点的仰角分别为60°,30°,则A点离地面的高度AB等于()A.a2B.3a2C.3aD.3a3解析:因为∠D=30°,∠ACB=60°,所以∠CAD=30°,故CA=CD=a.所以AB=asin60°=3a2.答案:B4.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM=AO·tan45°=30(m),ON=AO·tan30°=33×30=103(m),在△MON中,由余弦定理得,MN=900+300-2×30×103×32=300=103(m).答案:103根据上面所做题目,请填写诊断评价诊断错题题号错因(在相应错因中画√)知识性方法性运算性审题性评价※用自己的方式诊断记录减少失误从此不再出错授课提示:对应学生用书第70页考点一测量高度问题1.(2017·潍坊调研)为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.解析:在△BCD中,由正弦定理,得BCsin∠BDC=CDsin∠DBC,解得BC=102米,∴在Rt△ABC中,塔AB的高是106米.答案:106求解高度问题应注意的3个问题(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题时,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.[即时应用]1.要测量电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,求电视塔的高度.解析:如图,设电视塔AB高为xm,则在Rt△ABC中,由∠ACB=45°得BC=x.在Rt△ADB中,∠ADB=30°,则BD=3x.在△BDC中,由余弦定理得,BD2=BC2+CD2-2BC·CD·cos120°,即(3x)2=x2+402-2·x·40·cos120°,解得x=40,所以电视塔高为40m.考点二测量距离问题研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.常见的命题角度有:(1)两点都不可到达.(2)两点不相通的距离.(3)两点间可视但有一点不可到达.命题点1两点都不可到达2.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出AB的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.解析:∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32(km).在△BCD中,∠DBC=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin45°·sin30°=64.在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos45°=34+38-2×32×64×22=38.∴AB=64(km).∴A,B两点间的距离为64km.命题点2两点不相通的距离3.如图所示,要测量一水塘两侧A,B两点间的距离,其方法是先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2abcosα.若测得CA=400m,CB=600m,∠ACB=60°,试计算AB的长.解析:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB,∴AB2=4002+6002-2×400×600cos60°=280000.∴AB=2007(m).即AB长为2007m.命题点3两点可视但有一点不可到达4.如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出AB的距离,其方法在A所在的岸边选定一点C,可以测出AC的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.若测出AC=60m,∠BAC=75°,∠BCA=45°,则A,B两点间的距离为________m.解析:∠ABC=180°-75°-45°=60°,所以由正弦定理得,ABsinC=ACsinB,∴AB=AC·sinCsinB=60×sin45°sin60°=206(m).即A,B两点间的距离为206m.答案:206求距离问题的3个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(3)运用正、余弦定理、有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.考点三角度问题5.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cosθ的值.解析:如题中图所示,在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理知,BC2=AB2+AC2-2AB·AC·cos120°=2800⇒BC=207.由正弦定理,得ABsin∠ACB=BCsin∠BAC⇒sin∠ACB=ABBC·sin∠BAC=217.由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=277.由θ=∠ACB+30°,得cosθ=cos(∠ACB+30°)=cos∠ACBcos30°-sin∠ACBsin30°=2114.1.规律方法解决测量角度问题的3个注意点(1)明确方向角的含义.(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.2.易错纠偏方位角是指北方向与目标方向线按顺时针之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.[即时应用]2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.答案:B授课提示:对应学生用书第71页常考实际问题中的角度、方向、距离及测量问题.题型以解答题为主,难度中档.1.(2014·高考新课标全国Ⅰ卷)如图,为测量出山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=________m.解析:在三角形ABC中,AC=1002,在三角形MAC中,MAsin60°=ACsin45°,解得MA=1003,在三角形MNA中,MN1003=sin60°=32,故MN=150,即山高MN为150m.答案:1502.(2015·高考湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:依题意,∠BAC=30°,∠ABC=105°.在△ABC中,由∠ABC+∠BAC+∠ACB=180°,所以∠ACB=45°,因为AB=600m,由正弦定理可得600sin45°=BCsin30°,即BC=3002m.在Rt△BCD中,因为∠CBD=30°,BC=3002m,所以tan30°=CDBC=CD3002,所以CD=1006m.答案:10063.(2014·高考四川卷)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.240(3-1)mB.180(2-1)mC.120(3-1)mD.30(3+1)m解析:∵tan15°=tan(60°-45°)=tan60°-tan45°1+tan60°tan45°=2-3,∴BC=60tan60°-60tan15°=120(3-1)(m),故选C.答案:C课时作业A组基础对点练1.若两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°方向上,灯塔B在观察站C的南偏东40°方向上,则灯塔A与灯塔B的距离为()A.akmB.2akmC.2akmD.3akm解析:依题意知∠ACB=180°-20°-40°=120°,在△ABC中,由余弦定理知AB=a2+a2-2×a×a×-12=3a(km),即灯塔A与灯塔B的距离为3akm.答案:D2.(2017·江西联考)某位居民站在离地20m高的阳台上观测到对面小高层房顶的仰角为60°,小高层底部的俯角为45°,那么这栋小高层的高度为()A.20(1+33)mB.20(1+3)mC.10(2+6)mD.20(2+6)m解析:如图,设AB为阳台的高度,CD为小高层的高度,AE为水平线.由题意知AB=20m,∠DAE=45°,∠CAE=60°,故DE=20m,CE=203m.所以CD=20(1+3)m.故选B.答案:B3.(2017·武汉武昌区调研)如图,据气象部门预报,在距离某码头南偏东45°方向600km处的热带风暴中心正以20km/h的速度向正北方向移动,距风暴中心450km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为()A.14hB.15hC.16hD.17h解析:记现在热带风暴中心的位置为点A,t小时后热带风暴中心到达B点位置,在△