线性代数在现实生活中的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

线性代数在现实生活中的应用【摘要】线性代数理论有着悠久的历史和丰富的内容,其理论应用,是研究现代科学技术的重要方法,在众多的科学技术领域中应用都十分广泛。本文通过对线性代数的定义的解释,和应用实例的列举,分析了线性代数被广泛运用于各个领域的原因。并对在这些领域中,线性代数的具体应用做了简要论述。【关键词】线性代数;实际生活;应用实例一、什么是线性代数线性代数(LinearAlgebra)是数学的一个分支,也是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。[1]也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的是为了解决问题的方便,为了提高效率,通过线性代数可以把一些看似不相关的问题化归为一类问题。线性代数的研究内容包括行列式,矩阵和向量等,其主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大。它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。二、线性代数被广泛运用的原因为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢?原因之一,大自然的许多现象恰好是线性变化的。以物理学为例,整个物理世界可以分为机械运动、电运动、还有量子力学的运动。而机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,这是一个基本的线性微分方程。电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程,也是线性方程组。其二,随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而科学研究中的非线性模型通常也可以被近似为线性模型,另外由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学(量子力学)是建立在线性Hilbert空间的理论基础上的,没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中是不可缺少的。其三,线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。三、线性代数在实际中的应用下面将从几个领域出发简要谈一下线性代数在实际生活中的应用。1.在运筹学中的应用运筹学的一个重要议题是线性规划,许多重要的管理决策是在线性规划模型的基础上做出的。而线性规划则要用到大量的线性代数的知识进行处理。如果你掌握了线性代数及线性规划的相关知识,那么你就可以将实际生活中的大量问题抽象为线性规划问题,从而得到最优解。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。即使你是一家小商店的老板,你也可以运用线性代数知识来合理的安排各种商品的进货,以达到最大利润;或者你仅仅是一个大家庭中的一员,你同样可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用。2.在电子、软件工程中的应用由于线性代数是研究线性网络的主要工具,因此,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代;在进行IC集成电路设计时,对付数百万个集体管的仿真软件也需要依赖线性方程组的方法;对于光电及射频工程,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。此外,3D游戏的制作也是以图形的矩阵运算为基础的,游戏里的大量图像数据处理更离不开矩阵这个强大的工具,比如电影《阿凡达》中大量的后期电脑制作,如果没有线代的数学工具简直难以想象。3.在工业生产和经济管理中的应用在工业生产和经济管理方面应用最广的应该是行列式了,人们可以利用行列式解决部分工程中的现实问题。例如:日常会计工作中有时会遇到的一些单位成本问题,虽然成本会计可以算出单位成本,用约当产量法或定额法或原材料成本法,但只能求得近似值,不能求得精确值。许多工程施工中,经常遇到计算断面面积、开挖或回填方量的工作。根据行列式的几何意义,将其与实际纵断图结合分析,可以直接计算出结果,并具有精确、简便的优点。4.在机械工程领域中的应用在机械工程领域复杂线性方程组的数值求解是经常遇见的问题,而且机械工程中的一些多解问题,例如机构转配构型,机器人机构树状解和设计方案的多解问题等,常常需要线性代数中线性方程的一些理论求解。并且线性代数中的公式通用于能淬火硬化的各种碳素钢及合金钢。实际上,这些方程可以当作是一种定量尺度,广泛用于设计或选择钢种、制定或修订标准、控制熔炼成分等方面。此外,这也有助于建立关于成分、组织和性能的完整的计算体系。这为机械工程领域作出了巨大的贡献。5.其他领域中的应用对于其他领域,也基本没有用不上线代的地方。如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;做餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;再比如气象方面,为了做天气和气象预报,有时往往根据诸多因素最后归结为解一个线性方程组。当然,这种线性方程组在求解时不能手算,而要在电子计算机上进行;又比如线性方程组在国民经济中的应用。为了预测经济形势,利用投入产出经济数学模型,也往往归结为求解一个线性方程组。知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列。另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解。再比如现代飞行器外形设计,这个就需要先研究飞机表面的气流的过程。把飞行器的外形分成若干大的部件,每个部件沿着其表面又用三维的细网格划分出许多立方体,这些立方体包括了机身表面以及此表面内外的空气。对每个立方体列写出空气动力学方程,其中包括了与它相邻的立方体的共同边界变量,这些方程通常都已经简化为线性方程。卫星遥感图象处理中,卫星上用三种可见光和四种红外光进行摄像,对每一个区域,可以获得七张遥感图象。利用多通道的遥感图可以获取尽可能多的地面信息,因为各种地貌、作物和气象特征可能对不同波段的光敏感。而在实用上应该寻找每一个地方的主因素,成为一张实用的图象。每一个象素上有七个数据,形成一个多元的变量数组,在其中合成并求取主因素的问题,就与线性代数中要讨论的特征值问题有关。总结一下,线性代数的应用领域几乎可以涵盖所有的工程技术领域。四、结束语线性代在某些新兴领域里的发展都存在着非常大的技术难点,但随着科学技术的迅猛发展及其数学化的趋势,在未来,线性代数在计算机,计算机图形,计算机辅助设计,密码学,虚拟现实等技术中将会发挥更大的作用。它将会改变我们生活,将我们带进一个奇妙的世界。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功