导数的几何意义(优质课比赛)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.1.3导数的几何意义xxfxxflimxylimxf0x0x000-+==即:000xxyfxxxfxy=函数=在=处的导数,记作:或表示“平均变化率”xx-fx+xf=00xy一、复习1、导数的定义其中:其几何意义是表示曲线上两点连线(就是曲线的割线)的斜率。'000'0,,.,?fxfxxxfxxxfx我们知道导数表示函数在处的瞬时变化率反映了函数在附近的变化情况那么导数的几何意义是什么呢P1P2P3P4PTTTTPPxfyxfyxfyxfyOyxOyxOyxOyx211.图1234?,,,,,,,.什么是趋势化变的割线时趋近于点沿着曲线当点图如察观nnnnPPxfxPxfnxfxP004321211yxo)(xfyP相交再来一次PPnoxyy=f(x)割线切线T当点Pn沿着曲线无限接近点P即Δx→0时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.?同过的切线定义有什么不此处切线定义与以前学切线Pl能否将圆的切线的概念推广为一般曲线的切线:直线与曲线有唯一公共点时,直线叫曲线过该点的切线?如果能,请说明理由;如果不能,请举出反例。不能xyo直线与圆有惟一公共点时,直线叫做圆的切线。所以,不能用直线与曲线的公共点的个数来定义曲线的切线。圆的切线定义并不适用于一般的曲线。通过逼近的方法,将割线趋于的确定位置的直线定义为切线(交点可能不惟一)适用于各种曲线。所以,这种定义才真正反映了切线的直观本质。2l1lxyABCxoyy=f(x)P(x0,y0)Q(x1,y1)M△x△y割线与切线的斜率有何关系呢?xxfxxfkPQ)()(xy00=即:当△x→0时,割线PQ的斜率的极限,就是曲线在点P处的切线的斜率,xxfxxfxyxx)()(k0000limlim=所以:0xf函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是.)(0xf故曲线y=f(x)在点P(x0,f(x0))处的切线方程是:))(()(000xxxfxfy导数的几何意义例1:2210[(1)1](11)|limxxxyx解:22(1)yx切线方程:20xy即:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.导数的几何意义的应用202lim2xxxx练习:如图,已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.)38,2(313Pxy上一点yx-2-112-2-11234OP313yx31(1),3yx解:.42|22xy即点P处的切线的斜率等于4.(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.330011()33limlimxxxxxyyxx2230133()()lim{}3xxxxxxx22201lim{[33()]}.3xxxxxx练:设f(x)为可导函数,且满足条件,求曲线y=f(x)在点(1,f(1))处的切线的斜率.12)1()1(lim0xxffx,12)1()1(lim)(0xxffxfx是可导函数且解:01(1)(1)lim1,21(1)xffxx.2)1(f故所求的斜率为-2.导数的几何意义的应用0(1)(1)lim2,(1)1xfxfxxoyy=f(x)PQ1Q2Q3Q4T想方法--以直代曲!中的重要思近似代替。这是微积分的切线就可以用过点曲线附近,。因此,在点附近的曲线最贴紧点的切线过点,更贴紧曲线比,更贴紧曲线比,更贴紧曲线比附近,在点观察图像,可以发现,PTPxfPxfPPTPxfPQPQxfPQPQxfPQPQP342312继续观察图像的运动过程,还有什么发现?.,,..,.以直代曲想方法这是微积分中重要的思附近的曲线点这替近似代切线我们用曲线上某点处的这里近似代替无理数用有理数如例刻画复杂的对象数学上常用简单的对象14163.,,,...,.附近的变化情况在述、比较曲线请描据图象根图象的数时间变化的函示跳水运动中高度随它表如图例21021056943112tttthttth0l1l2lthO0t1t2t311.图.,的变化情况刻画曲线在动点附近利用曲线在动点的切线.,,,变化情况在上述三个时刻附近的线刻画曲处的切线在我们用曲线解thtttxh210.,,.,几乎没有升降较平坦附近曲线比在所以轴平行于处的切线在曲线时当00001ttxltthtt.,,.`,附近单调递减在即函数降附近曲线下在所以的斜率处的切线在曲线时当11111102ttthttthltthtt.,,.`,单调递减附近也在即函数附近曲线下降在所以的斜率处的切线在曲线时当12222203ttthttthltthtt.,,.附近下降得缓慢附近比在在这说明曲线程度的倾斜的倾斜程度小于直线直线可见从图2121311ttthll0l1l2lthO0t1t2t311.图hto3t4t附近的变化情况。、在较曲线根据图像,请描述、比43ttth。数在两点附近单调递增点附近曲线上升,即函,所以在两斜率均大于处的切线的、函数在0tt43附近上升的快速附近比在这说明曲线在处切线的倾斜程度,处切线的倾斜程度大于但是4343tttt结论:根据导数的几何意义,当某点处导数大于零时,说明在这点的附近曲线是上升的,即函数在这点附近是单调递增;当某点处导数小于零时,说明在这点的附近曲线是下降的,即函数在这点附近是单调递减;当某点处导数等于零时,说明是函数的最值点。80.80.50.0010.20.30.40.60.70.90.01.11.10.20.30.40.50.60.70.90.01.11.mlmgc/mint411.图..,min...,.,.,.min:)/:(,.10806040204113精确到率物浓度的瞬时变化血管中药时估计根据图象函数图象变化的单位随时间位单物浓度表示人体血管中药它如图例ttmlmgtfc它表示从图象上看在此时刻的导数药物浓度就是度的瞬时变化率血管中某一时刻药物浓解,.,tf.在此点处的切线的斜率曲线tf.,,,.时变化率的近似值瞬可以得到此刻药物浓度估计这条切线的斜率利用网格线画出曲线上某点处的切如图411...,.,.'41804180ft所以它的斜率约为处的切线作.,,这些值是否正确一下验证时变化率的估计值下表给出了药物浓度瞬417004080604020.......'tft药物浓度的瞬时变化率二、函数的导数:(3)函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即。这也是求函数在点x0处的导数的方法之一。)(0xf)(xf0|)()(0xxxfxf小结:(2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数。)(xf(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系。.yxy例4.已知,求xyxxxxxx解:1yxxxx0011limlim.2xxyyxxxxx看一个例子:练习:如图,已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.)38,2(313Pxy上一点yx-2-112-2-11234OP313yx31(1),3yx解:.42|22xy即点P处的切线的斜率等于4.(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.330011()33limlimxxxxxyyxx2230133()()lim{}3xxxxxxx22201lim{[33()]}.3xxxxxx

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功