1.已知二阶系统的状态方程122()(),()()xtxtxtut性能泛函3222221212120111[(3)2(3)][2()4()2()()()]222Jxxxtxtxtxtutdt求最优控制。解:把状态方程和性能指标与标准状态方程和标准性能指标比较,可得0,101,02,11,,,,0,010,21,42ABPQR考虑到()Kt是对称阵,设11121222,(),kkKtkk代入黎卡提方程1()()()()()()()()()()()TTKtKtAtAtKtKtBtRtBtKtQt即1112111211121112111212221222122212221222,,,,,0,10,002,12[0,1],0,01,0,,1,1,4,kkkkkkkkkkkkkkkkkkkk令上式等号左右端的对应元相等,得211121211122222212222221224kkkkkkkkk这是一组非线性微分方程。由边界条件(3)KP即11121222(3),(3)1,0(3),(3)0,2kkkk最优控制为11112112122212222()()(),()2*[0,1]2()2(),()TutRBKtXtkkxtkxtkxtkkxt2.能控的系统状态方程为122()(),()()xtxtxtut这是一种双积分系统,其输出为1()xt,其输入为()ut,其传递函数为12()1()()xsGsuss其性能泛函为222112201[()2()()()()]2Jxtbxtxtaxtutdt其中220ab求最优控制。解:稳态时连续系统的状态调节器问题:由状态方程和性能指标求得0,101,,,10,01ABQRb,b,a显然Q为半正定阵。可控性阵为0,1,1,0BAB是非奇异的,系统可控。考虑到()Kt是对称阵,设11121222,(),kkKtkk代入黎卡提方程1()()()()()()()()()()()TTKtKtAtAtKtKtBtRtBtKtQt即1112111211121112111212221222122212221222,,,,,0,10,001,[0,1],0,01,0,,1,,,kkkkkkkkkkbkkkkkkkkbakk令上式等号左右端的对应元相等,得2111212122211222221212kkkkkkbkkka当111222ft时,k、k、k都趋于零,则黎卡提微分方程变为黎卡提代数方程2121222112221201002kkkkbkka上面的方程组可得111222k、k、k的稳态值111222=2=1=2abakkk为保证K正定,根据塞尔韦斯特判据,K的各阶主子式应大于零,即211221122120,0,kkkkk将求得的111222kkk、、的值代入上面正定性条件,可得1+a2ba最优控制可计算如下1111211212222()()(),()[0,1]()2(),()TutRBKtXtkkxtxtaxtkkxt由于12()1()()xsGsuss拉氏反变换得1()xtut22()()1autxtt3.22211210min(0.1),,Jxudtxxuxx求最优控制。解:稳态时连续系统的状态调节器问题:由状态方程和性能指标求得1,010,0,,0.11,00ABQR,0,1显然Q为半正定阵。可控性阵为1,1,0,1BAB是非奇异的,系统可控。考虑到()Kt是对称阵,设11121222,(),kkKtkk代入黎卡提方程1()()()()()()()()()()()TTKtKtAtAtKtKtBtRtBtKtQt即1112111211121112111212221222122212221222,,,,,1,01,110,010[1,0],1,00,0,,0,,kkkkkkkkkkkkkkkkkkkk0,1令上式等号左右端的对应元相等,得211111212121122122221210210101kkkkkkkkkk当111222ft时,k、k、k都趋于零,则黎卡提微分方程变为黎卡提代数方程211121211221221201020100101kkkkkkk上面的方程组可得111222k、k、k的稳态值111222=2=1=21kkk为保证K正定,根据塞尔韦斯特判据,K的各阶主子式应大于零,即211221122120,0,kkkkk将求得的111222kkk、、的值代入上面正定性条件,满足。最优控制可计算如下11112111112212222()()(),()10[1,0]10()10(),()TutRBKtXtkkxtkxtkxtkkxt4.线性系统的状态方程()(),(0)1xtutx性能泛函220(()())Jxtutdt试求最优控制函数。解:0,1,2,2abqr因为()()xtut,系统是可控的。黎卡提代数方程10KaaKKbbKqr代入得1202KK解得20K最优控制1()()utbKxtr代入得11()()*2()()2utbKxtxtxtr代入状态方程:()()xtxt所以txce又因为(0)1x所以1c所以最优控制()tute5.22210min(),kkkkkkJxuxxu试求最优控制函数。解:本题为离散状态调节器问题。由题意:1,1,0,1,1,3ABPQRN黎卡提方程可写为111()()()[(1)()()()]()TTKkQkAkKkBkRkBkAk代入得11(1)()1[(1)1]1(1)1KkKkKkKk终端值(3)(3)0KP。由3k反向计算,求出(2)(1)(0)KKK、、。(3)(2)1=1(3)1KKK,(2)3(1)=1=(2)12KKK,(1)8(0)1=(1)15KKK最优控制1()()()()[()()]()TTukRkBkAkKkQkXk代入得()[()1]()ukKkXk3(0)[(0)1](0)(0)5uKxx,2(1)(0)(0)(0)5xxux再计算(1)u11(1)(1)(0)25uxx,1(2)(1)(1)(0)5xxux再计算(2)u(2)[(2)1](2)0uKx6.给定一阶系统()(),(1)3,xtutx性能泛函62201(5)()2Jxutdt试求最优控制*,u使J取极小值。解:由题意得:0A,1B,2P,0Q,1R黎卡提方程可写为1()()()()()()()()()()()TTKtKtAtAtKtKtBtRtBtKtQt代入得2()()KtKt解得:1()Kttc又因为()2fKtP所以132c则12()131322Kttt最优控制计算如下2()()()()132utKtXtXtt代入状态方程2()()()132xtutxtt解得()(213)xtct又因为(1)3x所以311c639()11txt7.对一维线性系统1220(1)()2(),0,1,...,1.()4(),()NkxkxkukkNJxNuk为正常数求使J取最小值的最优控制。解:由题意:()1,()2,2,0,8AkBkPQR黎卡提方程可写为111()()()[(1)()()()]()TTKkQkAkKkBkRkBkAk代入得111(1)()[(1)]212(1)KkKkKkKk1()()()()[()()(1)()]()(1)()TTUkLkXkLkRkBkKkBkBkKkAk()Lk最优反馈增益阵代入11(1)()()()[84(1)]2(1)()*()22(1)KkUkLkXkKkKkXkXkKk8.9201(),..(1)()(),(0)1,(10)02Jukstxkxkukxx求最优控制*()uk和最优轨迹*()xk。解:由题意得:()1,(),0,1AkBkPR,0Q黎卡提方程可写为111()()()[(1)()()()]()TTKkQkAkKkBkRkBkAk代入得1212(1)()[(1)]1(1)KkKkKkKk终端值(10)(10)0KP。10k反向计算,求出(9)(8)(0)KKK、...。通过计算得(9)(8)..........(0)0KKK最优控制1()()()()[()()]()TTukRkBkAkKkQkXk代入得()()()ukKkXk