非常好的排列与组合讲义(教师版、含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

张老师数学课堂1第二节排列与组合1.排列与排列数公式(1)排列与排列数(2)排列数公式Amn=n(n-1)(n-2)…(n-m+1)=n!n-m!(m,n∈N*,m≤n).(3)排列数的性质Ann=n!;A0n=1;0!=1.[探究]1.排列与排列数有什么区别?提示:排列与排列数是两个不同的概念,排列是一个具体的排法,不是数,而排列数是所有排列的个数,是一个正整数.2.组合与组合数公式(1)组合与组合数(2)组合数公式Cmn=nn-n-n-m+m!=n!m!n-m!(m,n∈N*,m≤n).(3)组合数性质①C0n=1;②Cmn=Cn-mn;③Cmn+1=Cmn+Cm-1n.[探究]2.如何区分一个问题是排列问题还是组合问题?提示:看选出的元素与顺序是否有关,若与顺序有关,则是排列问题,若与顺序无关,则是组合问题.1.12名选手参加校园歌手大奖赛,大赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,则不同的获奖种数是()A.123B.312C.A312D.12+11+10解析:选C从12名选手中选出3名获奖并安排奖次,共有A312种不同的获奖情况.2.异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是()A.20B.9C.C39D.C24C15+C25C14解析:选B分两类,第一类在直线a上任取一点与直线b可确定C14个平面;第二类在直线b上任取一点与直线a可确定C15个平面.故可确定C14+C15=9个不同的平面.3.将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有()A.252种B.112种C.20种D.56种解析:选B不同的分配方案共有C27C55+C37C44+C47C33+C57C22=112种.4.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有_种.张老师数学课堂2解析:(间接法)共有C47-C44=34种不同的选法.答案:345.如图M,N,P,Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有________种.解析:M,N,P,Q共有6条线段(桥抽象为线段),任取3条有C36=20种方法,减去不合题意的4种.则不同的方法有16种.答案:16[例1]3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.[自主解答](1)问题即为从7个元素中选出5个全排列,有A57=2520种排法.(2)前排3人,后排4人,相当于排成一排,共有A77=5040种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法,由分步乘法计数原理知,共有N=A33·A44·A22=288种.(4)不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的五个空中安排共有A35种排法,故N=A44·A35=1440种.(5)先安排甲,从除去排头和排尾的5个位中安排甲,有A15=5种排法;再安排其他人,有A66=720种排法.所以共有A15·A66=3600种排法.本例中若全体站成一排,男生必须站在一起,有多少中排法?解:(捆绑法)即把所有男生视为一个元素,与4名女生组成5个元素全排,故有N=A33·A55=720种.解决排列类应用题的主要方法(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;张老师数学课堂3(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列.1.一位老师和5位同学站成一排照相,老师不站在两端的排法()A.450B.460C.480D.500解析:选C先排老师有A14种排法,剩下同学有A55种排法.共有A14A55=480种排法.2.排一张有5个歌唱节目和4个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?解:(1)先排歌唱节目有A55种,歌唱节目之间以及两端共有6个空位,从中选4个放入舞蹈节目,共有A46种方法,所以任两个舞蹈节目不相邻的排法有A55·A46=43200种方法.(2)先排舞蹈节目有A44种方法,在舞蹈节目之间以及两端共有5个空位,恰好供5个歌唱节目放入.所以歌唱节目与舞蹈节目间隔排列的排法有A44·A55=2880种方法.[例2]要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选.[自主解答](1)法一:至少有1名女生入选包括以下几种情况:1女4男,2女3男,3女2男,4女1男,5女.由分类加法计数原理知总选法数为C15C47+C25C37+C35C27+C45C17+C55=771种.法二:“至少有1名女生入选”的反面是“全是男代表”,可用间接法求解.从12名人中任选5人有C512种选法,其中全是男代表的选法有C57种.所以“至少有1名女生入选”的选法有C512-C57=771种;(2)至多有2名女生入选包括如下几种情况:0女5男,1女4男,2女3男,由分类加法计数原理知总选法数为C57+C15C47+C25C37=546种.(3)男生甲和女生乙入选,即只要再从除男生甲和女生乙外的10人任选3名即可,共有C22C310=120种选法;(4)法一:男生甲和女生乙不能同时入选包括以下几种情况:男生甲入选女生乙不入选;男生甲不入选女生乙入选;男生甲和女生乙都不入选.由分类加法计数原理知总选法数为C410+C410+C510=672种.法二:间接法:从12人中选出5人,有C512种选法,从除去男生甲和女生乙外的10人中任选3人有C310种选法,所以“男生甲和女生乙不能同时入选”的选法有C512-C22C310=672种;(5)间接法:“男生甲、女生乙至少有一个人入选”的反面是“两人都不入选”,即从其余10人中任选5人有C510种选法,所以“男生甲、女生乙至少有一个人入选”的选法数为C512-C510=540种.张老师数学课堂4组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.3.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A.30种B.35种C.42种D.48种解析:选A法一:可分两种互斥情况:A类选1门,B类选2门或A类选2门,B类选1门,共有C13C24+C23C14=18+12=30种选法.法二:总共有C37=35种选法,减去只选A类的C33=1种,再减去只选B类的C34=4种,共有30种选法.[例3]有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.[自主解答](1)先选后排,先选可以是2女3男,也可以是1女4男,先取有C35C23+C45C13种,后排有A55种,共有(C35C23+C45C13)·A55=5400种.(2)除去该女生后,先取后排,有C47·A44=840种.(3)先选后排,但先安排该男生,有C47·C14·A44=3360种.(4)先从除去该男生该女生的6人中选3人有C36种,再安排该男生有C13种,选出的3人全排有A33种,共C36·C13·A33=360种.求解排列、组合综合题的一般思路排列、组合的综合问题,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.4.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”,即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C14C24C13×A22=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C24种方法,4个球放进2个盒子可分成(3,1),(2,2)两类,第一类有序不均匀分组有C34C11A22种张老师数学课堂5方法;第二类有序均匀分组有C24C22A22·A22种方法.故共有C24C34C11A22+C24C22A22·A22=84种.3点注意——求解排列、组合问题的三个注意点(1)解排列、组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理作最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都是犯有重复或遗漏.创新交汇——几何图形中的排列组合问题1.排列、组合问题的应用一直是高考的热点内容之一,高考中除了以实际生活为背景命题外,还经常与其他知识结合交汇命题.2.解答此类问题应注意以下问题:(1)仔细审题,判断是排列问题还是组合问题;(2)对限制条件较为复杂的排列组合问题,可分解为若干个简单的基本问题后再用两个原理来解决;(3)由于排列组合问题的答案一般数目较大,不易直接验证,可采用多种不同的方法求解,看结果是否相同来检验.[典例](2011·湖北高考)给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有________种,至少有两个黑色正方形相邻的着色方案共有________种(结果用数值表示).[解析](1)当n=6时,如果没有黑色正方形有1种方案,当有1个黑色正方形时,有6种方案,当有两个黑色正方形时,采用插空法,即两个黑色正方形插入四个白色正方形形成的5个空内,有C25=10种方案,当有三个黑色正方形时,同上方法有C34=4种方案,由图可知不可能有4个,5个,6个黑色正方形,综上可知共有21种方案.(2)将6个正方形空格涂有黑白两种颜色,每个空格都有两种方案,由分步计数原理一共有26种方案,本问所求事件为(1)的对立事件,故至少有两个黑色正方形相邻的方案有26-21=43种.张老师数学课堂6[答案]2143(2012·安徽高考)6位同学在毕业聚会活动中进行纪念品的交换,任

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功