1第六节两类问题:在收敛域内和函数求和展开本节内容:一、泰勒(Taylor)级数二、函数展开成幂级数函数展开成幂级数2一、泰勒(Taylor)级数)()(0xfxf))((00xxxf200)(!2)(xxxfnnxxnxf)(!)(00)()(xRn其中)(xRn(在x与x0之间)称为拉格朗日余项.10)1()(!)1()(nnxxnf则在若函数的某邻域内具有n+1阶导数,此式称为f(x)的n阶泰勒公式,该邻域内有:3)(0xf))((00xxxf200)(!2)(xxxfnnxxnxf)(!)(00)(为f(x)的泰勒级数.则称当x0=0时,泰勒级数又称为麦克劳林级数.1)对此级数,它的收敛域是什么?2)在收敛域上,和函数是否为f(x)?待解决的问题:若函数的某邻域内具有任意阶导数,4定理1.各阶导数,则f(x)在该邻域内能展开成泰勒级数的充要条件是f(x)的泰勒公式中的余项满足:.0)(limxRnn证明:,)(!)()(000)(nnnxxnxfxf令)()()(1xRxSxfnn)(limxRnn)()(lim1xSxfnn,0)(0xxknkknxxkxfxS)(!)()(000)(1)(0xx设函数f(x)在点x0的某一邻域内具有5定理2.若f(x)能展成x的幂级数,则这种展开式是唯一的,且与它的麦克劳林级数相同.证:设f(x)所展成的幂级数为则;2)(121nnxnaxaaxf)0(1fa;)1(!2)(22nnxannaxf)0(!212fa;!)()(nnanxf)0()(!1nnnfa显然结论成立.)0(0fa6二、函数展开成幂级数1.直接展开法由泰勒级数理论可知,展开成幂级数的步函数)(xf第一步求函数及其各阶导数在x=0处的值;第二步写出麦克劳林级数,并求出其收敛半径R;第三步判别在收敛区间(-R,R)内)(limxRnn是否为骤如下:展开方法直接展开法—利用泰勒公式间接展开法—利用已知其级数展开式0.的函数展开7例1.将函数展开成x的幂级数.解:,)()(xnexf),,1,0(1)0()(nfn1其收敛半径为对任何有限数x,其余项满足e!)1(n1nxxe故,!1!31!21132nxxnxxxenRlim!1n!)1(1nn(在0与x之间)x2!21x3!31xnxn!1故得级数8例2.将展开成x的幂级数.解:)()(xfn)0()(nf得级数:x其收敛半径为,R对任何有限数x,其余项满足))1(sin(2n!)1(n1nx12kn),2,1,0(k3!31x5!51x12!)12(11)1(nnnxxsinnkn2,)1(k,012!)12(115!513!31)1(nnnxxxx9nnxnxxx2142!)2(1)1(!41!211cos类似可推出:12153!)12(1)1(!51!31sinnnxnxxxx(P220例3)12例3.将函数展开成x的幂级数,其中m为任意常数.解:易求出,1)0(f,)0(mf,)1()0(mmf,)1()2)(1()0()(nmmmmfn于是得级数mx12!2)1(xmm由于1limnnnaaRnmnn1lim1nxnnmmm!)1()1(级数在开区间(-1,1)内收敛.因此对任意常数m,1311,)(xxF2!2)1(xmmnxnnmmm!)1()1(1!)1()1()1(111)(nxnnmmxmmxFxmxF1)()()1(xFx),(xmFmxxF)1()(xxxxmxxFxF00d1d)()()1ln()0(ln)(lnxmFxF1)0(F推导则为避免研究余项,设此级数的和函数为142!2)1(xmmnxnnmmm!)1()1(xmxm1)1(称为二项展开式.由此得15);1,1(1收敛区间为m];1,1(11收敛区间为m].1,1[1收敛区间为m说明:(1)在x=±1处的收敛性与m有关.(2)当m为正整数时,级数为x的m次多项式,上式就是代数学中的二项式定理.16对应1,,2121m的二项展开式分别为xx21112421x364231x)11(x48642531x111x24231x3642531x)11(x486427531xx21111x2x3x)11(xnnx)1(x)11(1112xxxxxn17基本展开式,!5!3!)12()1(sin53012xxxnxxnnn,!!21!e20nxxxnxnnnx),(x),(x,!4!21!)2()1(cos4202xxnxxnnn),(x,32)1()1ln(3211xxxnxxnnn]1,1(x18收敛域为:0m:]1,1[01m:]1,1(1m:)1,1(2!2)1(1)1(xmmmxxmnxnnmmm!)1()1((n不为正整数)此外还有,110nnxx)1,1(x192.间接展开法x11利用一些已知的函数展开式及幂级数的运算性质,例4.将函数展开成x的幂级数.解:因为nnxxx)1(12)11(x把x换成2x211xnnxxx242)1(1)11(x,得将所给函数展开成幂级数.20xxdxx021arctan12)1(51311253nxxxxnn]1,1[xxxdxx01)1ln(nxxxxnn132)1(3121]1,1(x21例5.将函数展开成x的幂级数.解:xxf11)()11()1(0xxnnn从0到x积分,得xxxxnnnd)1()1ln(00,1)1(01nnnxn定义且连续,区间为利用此题可得11x11x上式右端的幂级数在x=1收敛,有在而1)1ln(xx所以展开式对x=1也是成立的,于是收敛22例6.将展成解:)(sinsin44xx)sin(cos)cos(sin4444xx)sin()cos(4421xx32)4(!31)4(!21)4(121xxx的幂级数.)4(x3)4(!31x5)4(!51x23例7.将展成x-1的幂级数.解:)3)(1(13412xxxx21x21x222)1(xnnnx2)1()1(81nnnnnx)1(2121)1(3220)31(x)21(x41x124例8处展开成泰勒级数在将141)(xxxxf解).1()1()(nfx并求的幂级数展开成)1(3141xx,)311(31x])31()31(311[312nxxx31x25xxxx41)1(41nnxxxx3)1(3)1(3)1()1(31332231x!)1()(nfn于是.3!)1()(nnnf故,31n26内容小结1.函数的幂级数展开法(1)直接展开法—利用泰勒公式;(2)间接展开法—利用幂级数的性质及已知展开2.常用函数的幂级数展开式xe1),(x)1(lnxx]1,1(xx2!21x,!1nxn221x331x441x11)1(nnxn式的函数.27!)12()1(12nxnnxsinx!33x!55x!77xxcos1!22x!44x!66x!)2()1(2nxnnmx)1(1xm2!2)1(xmmnxnnmmm!)1()1(当m=–1时x11,)1(132nnxxxx),(x),(x)1,1(x)1,1(x28思考与练习1.函数处“有泰勒级数”与“能展成泰勒级数”有何不同?提示:后者必需证明,0)(limxRnn前者无此要求.2.如何求的幂级数?提示:xy2cos21210!)2(1)1(2121nnn,!)2(4)1(2121nnnnxn),(x30附:利用泰勒公式求极限例.求解:由于x431243x2)(14321x!21)1(2121243)(x)(2xo用洛必塔法则不方便!2x用泰勒公式将分子展到项,11)1(!)1()()1(nnxxnn)10(x34220limxx原式)(2216921xox329x43)(2216941xox2x43)(2216941xox3111)1(!)1()()1(nnxxnn)10(利用泰勒公式证明不等式例.证明证:21)1(1xx21x2)121(21!21x325)1)(221)(121(21!31xx)10(3225)1(161821xxxx)0(82112xxxx32备用题1.将下列函数展开成x的幂级数解:,)1(02nnnx)1,1(x002d)1(nxnnxx01212)1(nnnxnx=±1时,此级数条件收敛,,4)0(f,12)1(4)(012nnnxnxf]1,1[x因此33)1(lnxx]1,1(x221x331x441x11)1(nnxn2.将在x=0处展为幂级数.解:)1ln(x)32)(1(322xxxx1nnnx)11(x)1ln(23xnnnxn)(23)1(11)(3232xnnnxn])(1[12ln231)(3232x因此2ln)(xf1nnnxnnnxn)()1(2311343.计算)(!2114422xoxxex)(!4!21cos542xoxxx)()!412!21(3cos2442xoxxex127)(lim4441270xxoxx解:原式3738Howbeautifultheseais!