基于嵌入式目标模块的太阳能LED照明控制系统研究(1)1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

景德镇高等专科学校机械电子工程系毕业论文系别:机械电子工程系专业:09应用电子技术(营销与服务)姓名:李端学号:200902030212指导老师:汪兆栋时间:2011年12月1号1摘要太阳能LED照明系统作为新型照明方式,不仅具有独立光伏照明系统的诸多优点,如清洁无污染、无需长距离输电导线等,还具有LED照明的发光效率高、光线柔和、光伏电池设计容量小等诸多优势。但系统需实现最大功率点跟踪(MPPT)控制、LED非线性负载放电控制和蓄电池充放电控制等功能,对控制具有较高要求。本文对控制系统要求进行分析,分别进行了MPPT、充电策略和LED放电控制的研究,并采用MATLAB/Simulink对主电路和控制系统进行仿真。基于仿真模型,采用嵌入式目标模块eZdsp生成TSM320F2812DSP控制程序,对仿真模型进行快速转化,并在硬件平台对具体控制系统进行实现。系统具有动态响应快、启动电流平滑、稳态精度高等优点,从而得出适合太阳能LED照明系统的控制方法。关键词:嵌入式目标模块;最大功率点跟踪;LED照明2目录前言......................................................................................................3第1章:系统控制要求分析与实现方法..............................................41.1:MPPT控制的优化实现...........................................................51.2:LED灯恒流控制的优化实现..................................................6图1.1:恒电流双环控制模型框图1.3:系统充放电策略选取............................................................71.4:基于嵌入式目标模块的控制程序生成....................................7第2章:仿真和实验...............................................................................8仿真电路模型及图形图2.2:MATLAB/Simulink仿真......................................................................8图2.3:变步长的改进干扰观测法MPPT控制的Simulink模型.........................9图2.4:MPPT仿真波形图...........................................................................10图2.5:LED负载放电电路模型.....................................................................11图2.6:负载电压电流波形............................................................................12图2.7:电压电流实验波形............................................................................13图2.8:太阳能LED照明控制器实际装置.......................................................143第3章:结论.........................................................................................14第4章:建议............................................................................................15参考文献..................................................................................................164前言太阳能LED照明系统作为新型照明方式,不仅具有独立光伏照明系统的诸多优点,如清洁无污染、无需长距离输电导线等,还具有LED照明的发光效率高、光线柔和、光伏电池设计容量小等诸多优势。但系统需实现最大功率点跟踪(MPPT)控制、LED非线性负载放电控制和蓄电池充放电控制等功能,对控制具有较高要求。太阳能作为重要的新能源,具有清洁无污染、储量巨大、便于利用等优点;LED(发光二极管)照明系统具有寿命长、发光效率高等优点,也开始广泛应用于照明;太阳能LED照明系统集中了太阳能和LED的诸多优点,具有很好的市场前景。但其具有自身的缺陷:太阳能电池板输出伏安特性(V-I)曲线为非线性,只有工作在特定电压下才能输出最大功率,需要进行最大功率点跟踪(MPPT)控制;LED灯的伏安特性曲线近似为指数函数,因此对控制精度要求较高,否则容易损坏;蓄电池作为储能元件,需要可靠合理的充放电管理策略,才能延长其使用寿命。本文根据上述问题,分别进行了MPPT控制研究、LED恒流控制研究和蓄电池充放电策略研究,采用MATLAB/Simulink进行系统主电路和控制算法综合仿真,得出较为理想的控制效果和控制参数,并对控制模型进行移植。5第1章系统控制要求分析与实现方法太阳能LED照明系统包括光伏阵列、蓄电池、LED阵列灯和控制器几个部分。其控制器需实现整个系统充放电控制,对光伏阵列、蓄电池和LED灯工作状态进行实时检测,并实现充放电切换过程,既要保证光伏阵列最大功率输出,又要保证蓄电池使用寿命和LED灯安全工作。1.1MPPT控制的优化实现目前MPPT控制研究较多,方法各异,控制效果各不相同,因此需要选取一种适合实际系统的合理方法。根据文献[1-3],选取适合小型独立系统的干扰观测法,并对其进行改进,完全可以满足控制需要。传统的干扰观测法在光伏系统中应用最为广泛,能快速准确进行MPPT控制,但存在最大功率点附近反复振荡和特殊情况下误判断的问题,如光照强度剧烈变化[3,4]。通过对传统方法的扰动步长Δs进行动态调整,即当外界条件变化剧烈时,适当加大扰动步长和控制周期,当系统运行接近稳态时,6减小扰动步长和控制周期,可提高系统动稳态精度,有效避免传统方法的反复振荡。同时,通过变步长方法,可以在检测到功率变化值ΔP较大时,锁定扰动步长为0,当系统处于相对稳定之后继续最大功率点搜索,即可有效解决传统方法的误判断现象。1.2LED灯恒流控制的优化实现LED灯负载伏安特性曲线近似为一指数函数,在额定功率附近di/dU比值非常大,对系统控制要求较高[5],若采用单环控制,系统阶数低,LED负载电压电流动态响应和稳态精度不可兼顾,很难保证效果。为此根据实际控制系统需要,建立恒电流双环控制模型框图如图1所示:7系统通过Iset设置运行参考电流,控制系统由电压电流传感器获得采样数据,经系统框图算法最终输出PWM脉冲作用于开关器件MOSFET门极以实现系统控制。采用恒电流双环控制,提高了系统阶数,并且以参考电流为最终控制对象,有利于提高LED负载电流平滑稳定。1.3系统充放电策略选取蓄电池在使用过程中,充放电策略对其寿命具有重要影响[6,7]。由于系统需要尽可能最大功率输出并储存以充分利用光伏阵列,因此充电策略需要既满足MPPT需求,也能解决蓄电池寿命问题。选取以下充电策略可以满足要求:MPPT充电控制:在电池端电压低于设定值Vset时,采用MPPT控制进行最大功率充电,尽可能保证光伏阵列输出最大功率,提高光伏阵列利用率;限功率充电控制:当蓄电池端电压达到Vset时,采用限功率充电控制,设定充电功率P≤Pset,此时充电电流iP小于MPPT充电电流iMPP,系统不再进行MPPT控制;浮充控制:当蓄电池端电压接近饱和电压Vf时,系统进一步降低充电电流,严格控制充电电压Vc=Vf,进入小电流浮充阶段,最终完成整个充电过程。81.4基于嵌入式目标模块的控制程序生成根据MATLAB/Simulink仿真模型,利用Simulink中EmbeddedTargetforTIC2000模块,对控制算法进行移植,并加入eZdsp模块对DSP资源进行配置,即可快速编译生成控制系统中TMS320F2812DSP的控制代码。由于采用了算法移植,使仿真结果能快速准确地在实际系统中得到验证,并依据仿真结果可对控制算法进行快速修改,大大提高效率[8]。9第2章仿真和实验在MATLAB/Simulink仿真中,建立如图2的主电路模型,主要由Buck主电路、传感器和光伏阵列模型组成。建立变步长的改进干扰观测法MPPT控制的Simulink模型如图3所示:1011图4(a)中,在光照强度快速变化时,光伏阵列输出电压只有微弱波动,而输出电流变化明显,与理想MPPT跟踪效果完全吻合;电流波形动态响应时间短、稳态波动小,体现出很好的控制性能。图124(b)中,系统从开始运行经过一段时间即稳定运行在最大功率点附近,当光照强度剧烈变化时,能快速准确运行在新的最大功率点处;波形中同一光照强度下的运行点变化范围较小,充分解决了干扰观测法在最大功率点附近反复振荡扰动和光照剧烈变化出现误判断的问题。基于Simulink建立如图5的LED负载放电电路模型,系统中VS1、VS2、CS1、CS2分别为电压、电流传感器,电路将蓄电池经Boost电路升压后接LED负载,控制程序利用图1所示控制算法根据采样数据最终输出PWM脉宽信号作用于MOSFET以实现系统控制。13设置LED启动参考电流为0.5A,在0.6s时改变参考电流为0.6A进行系统动稳态性能仿真,其负载电压电流波形如图6所示。图6中,LED启动电流不带有尖峰,可充分保护其免遭因尖峰电压导致瞬间过流而造成的损坏。在改变参考电流后,输出电流波形超调很小,动态响应相对较快,稳态精度较高。14根据以上模型,采用300W光伏电池、蓄电池组和50WLED灯构建实际系统,建立系统主电路和TMS320F2812控制板,采用嵌入式目标模块生成控制代码[8],最终由DSP实现系统控制,系统MPPT运行和LED负载启动时电压电流实验波形如图7所示。图7(a)的波形为在光照强度发生剧烈变化时光伏阵列输出电压电流实验波形。波形在光照发生剧烈变化时,光伏阵列输出电压微弱变化,但电流发生明显变化,充分体现MPPT控制算法能快速准确地进行控制,动态响应较快,稳态误差较小。15LED灯负载属于半导体器件,瞬间过压或过流就会导致损毁,因此实验中控制好启动过程,尽可能减小电压尖峰、电流毛刺尤为重要。图7(b)中设定LED灯启动时参考电流值为0.4A,波形显示LED负载在启动时平滑稳定,没有电压尖峰和电流毛刺产生,可保证LED灯安全稳定运行,控制性能较为理想。基于以上研究,太阳能LED照明控制器实际装置如图8所示。16第3章结论1)建立了太阳能LED照明控制系统的主电路MATLAB/Simulink仿真模型,在仿真结果基础上实现了太阳能LED照明系统控制器。2)对变步长的改进干扰观测法进行仿真,并在实际系统中加以实现,由图4可知系统MPPT控制中,光照突变时动态响应速度快,稳态运行电压电流波动小、跟踪曲线吻合好,体现稳态精度高的特点,有效解决了传统干扰观测法的频繁扰动和误判断问题;建立了LED灯恒电流双环控制模型,有效解决了LED负载因过流而瞬间损坏的问题,控制精度较高,动稳态性能较理想。3)基于MATLAB/Simulink嵌入式目标模块eZdsp进行控制程

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功