1.求函数的导数的方法是:(1)()();yfxxfx求函数的增量(2):()();yfxxfxxx求函数的增量与自变量的增量的比值0(3)()lim.xyyfxx求极限,得导函数说明:上面的方法中把x换成x0即为求函数在点x0处的导数.法一:定义法法二:公式法(1)利用公式求出导函数(2)把代入求出()fx0x0()fx函数在点处的导数、导函数、导数之间的区别与联系。1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数3)函数在点处的导数就是导函数在处的函数值,这也是求函数在点处的导数的方法之一。0x0()fx()fx0xx0x0()fx()fx0x0()fx0x()fx2.可以直接使用的基本初等函数的导数公式11:()'0;2:()';3:(sin)'cos;4:(cos)'sin;5:()'ln(0);6:()';17:(log)'(0,1);ln18:(ln)';nnxxxxaCxnxxxxxaaaaeexaaxaxx公式公式公式公式公式公式公式且公式函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是.)(0xf故曲线y=f(x)在点P(x0,f(x0))处的切线方程是:))(()(000xxxfxfy3.导数的几何意义的应用求切线方程的步骤:(2)根据直线方程的点斜式写出切线方程,即000()()().yfxfxxx(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。0()fx设f(x)为可导函数,且满足条件,求曲线y=f(x)在点(1,f(1))处的切线的斜率.12)1()1(lim0xxffx,12)1()1(lim)(0xxffxfx是可导函数且解:01(1)(1)lim1,21(1)xffxx.2)1(f故所求的斜率为-2.0(1)(1)lim2,(1)1xfxfx例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切线方程。(2)求过点Q的曲线y=x2的切线方程。(3)求与直线PQ平行的曲线y=x2的切线方程。典例分析题型:求曲线的切线方程'2yx解(1),(2):2(1,1),(2,4)PQyx都是曲线上的点。11'|2,xPy过点的切线的斜率k22'|4,xy过Q点的切线的斜率k12(1),210Pyxxy过点的切线方程:即:。44(2),440yxxy过Q点的切线方程:即:。例1.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切线方程。(2)求过点Q的曲线y=x2的切线方程。(3)求与直线PQ平行的曲线y=x2的切线方程。典例分析题型:求曲线的切线方程'2yx解(3):411,21PQ直线的斜率k11,440214yxxy与PQ平行的切线方程:即:。00'|21,xxyx切线的斜率k01,2x11(,)24M切点;2)11.yxy例2.已知,1)求求曲线在点(,)处的切线方程12()'()'yxx解1):1:1(1).2yx2)切线方程11212x1.2x1212x22x11即:y=已知点在曲线上吗?例3求过点(1,-1)与曲线y=x3-2x相切的直线方程.解:设P(x0,y0)为切点,则切线斜率为k=f′(x0)=3x20-2故切线方程为y-y0=(3x20-2)(x-x0)①∵(x0,y0)在曲线上,∴y0=x30-2x0②又∵(1,-1)在切线上,解得x0=1或x0=-12.∴将②代入③式得-1-(x30-2x0)=(3x20-2)(1-x0).故所求的切线方程为:y+1=x-1或y+1=-54(x-1).即x-y-2=0或5x+4y-1=0.∴-1-y0=(3x20-2)(1-x0)③则切线斜率为k=1或k=-54化简得2x30-3x20+1=0.分解因式得(x0-1)2(2x0+1)=0.已知点在曲线上吗?•曲线的切线的求法1.若已知曲线过点P(x0,y0),求曲线的切线则需分点P(x0,y0)是切点和不是切点两种情况求解.①点P(x0,y0)是切点的切线方程y-y0=f′(x0)(x-x0).•②当点P(x0,y0)不是切点时可分以下几步完成:•第一步:设出切点坐标P′(x1,f(x1)).•第二步:写出过P′(x1,f(x1))的切线方程为y-f(x1)=f′(x1)(x-x1).•第三步:将点P的坐标(x0,y0)代入切线方程求出x1.•第四步:将x1的值代入方程y-f(x1)=f′(x1)(x-x1)可得过点P(x0,y0)的切线方程.•曲线“在点P处的切线”是以点P为切点.•“过点P的切线”,点P可能是切点,也可能不是切点,点P也可能不在已知曲线上,切线可能不只一条.练习1:求双曲线y=1x在点(2,12)处的切线方程.解:∵y′=-1x2,∴y′|x=2=-14.∴切线方程为y-12=-14(x-2),即:x+4y-4=0练习2:求抛物线y=14x2过点(4,74)的切线方程.00,),xy解:设切点(01',2kyx又切线0001(),2yyxxx切线方程:74切线过(4,),20014yx①00071(4)42yxx,200017224yxx②0017xx解①②得:或149),44切点为(1,)或(7,11491(1)(4)4242yxyx切线方程:或24104490xyxy即:或14)7(27449xy练习:已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a、b、c的值.解:因为y=ax2+bx+c过点(1,1),所以a+b+c=1.y′=2ax+b,又曲线过点(2,-1),曲线过点(2,-1)的切线的斜率为4a+b=1.由a+b+c=1,4a+b=1,4a+2b+c=-1,所以4a+2b+c=-1.所以a、b、c的值分别为3、-11、9.解得a=3,b=-11,c=9.四、小结2.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题.1.会求常用函数的导数.其中:21,,,,ycyxyxyx公式1:.0()CC为常数