Iterative Solution of Linear Systems in the 20-th

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

IterativeSolutionofLinearSystemsinthe20-thCenturyYousefSaadHenkA.vanderVorstyAbstractThispapersketchesthemainresearchdevelopmentsintheareaofiterativemethodsforsolvinglinearsystemsduringthe20thcentury.Althoughiterativemethodsforsolvinglinearsystemsndtheiroriginintheearlynineteenthcentury(workbyGauss),theeldhasseenanexplosionofactivityspurredbydemandduetoextraordinarytechnologicaladvancesinengineeringandsciences.Thepastvedecadeshavebeenparticularlyrichinnewdevelopments,endingwiththeavailabilityoflargetoolboxofspecializedalgorithmsforsolvingtheverylargeproblemswhichariseinscienticandindustrialcomputationalmodels.Asinanyotherscienticarea,researchiniterativemethodshasbeenajourneycharacterizedbyachainofcontributionsbuildingoneachother.Itistheaimofthispapernotonlytosketchthemostsignicantofthesecontributionsduringthepastcentury,butalsotorelatethemtooneanother.1IntroductionNumericallinearalgebraisanexcitingeldofresearchandmuchofthisresearchhasbeentriggeredbyaproblemthatcanbeposedsimplyas:GivenA2Cmn,b2Cm,ndsolutionvector(s)x2CnsuchthatAx=b.Manyscienticproblemsleadtotherequirementtosolvelinearsystemsofequationsaspartofthecomputations.Fromapuremathematicalpointofview,thisproblemcanbeconsideredasbeingsolvedinthesensethatweexplicitlyknowitssolutionintermsofdeterminants.Theactualcomputationofthesolution(s)mayhoweverleadtoseverecomplications,whencarriedoutinniteprecisionandwheneachbasicarithmeticoperationtakesnitetime.Eventhe\simplecasewhenn=mandAisnonsingular,whichisatrivialproblemfromamathematicalpointofview,maybecomeverycomplicated,fromacomputationalpointofview,andmayeventurnouttobeimpossible.ThetraditionalwaytosolveanonsingularlinearsystemistoemployGaussianelimination,and,withallitsenhancements,toovercomenumericalinstabilities.ThisprocesscanbecarriedoutinO(n3)basicoatingpointoperations(additionsandmultiplications,assumingn=m).Manyapplicationsleadtolinearsystemswithalargen(wherethenotionof\largedepends,ofcourse,onthecapacityoftheavailablecomputer),anditbecamesoonevidentthatonehastoexploitspecicpropertiesoftheAathandinordertomakesolutionofthesystemfeasible.ThishasledtovariantsofGaussianeliminationinwhichthenon-zerostructureofAisexploited,sothatmultiplicationswithzeroresultareavoidedandthatsavingsincomputerstoragecouldberealized.Anotherdirectionofapproachwasbasedonthesolutionofanearbylinearsystem,withamatrixthatadmitsacomputationallyinexpensiveprocess(intermsofcomputingtimeandcomputerstorage),andtoembedthisinaniterativeprocess.Bothapproachesaimatmakingtheimpossiblepossible,andforthenoviceinthiseldthismayseemtobejustacollectionofcleverprogrammingtricks:\inprinciplesolvingtheproblemiswell-understoodbutonehastobewell-organizedtomakethecomputationalprocessalittlefaster.Forthisnoviceitwillcertainlycomeasabigsurprisethatawhole,stillincomplete,mathematicalframeworkhadtobedevelopedwithdeepandelegantresults.Asaresult,relevantsystemscouldbesolvedmanyordersofmagnitudefaster(andalsooftenmoreaccurate)thanbyastraightforwardGaussianDepartmentofComputerScienceandEngineering,UniversityofMinnesota,Minneapolis,USA,e-mailsaad@cs.umn.edu.WorksupportedbyNSF/CCRandbytheMinnesotaSupercomputerInstitute.yDepartmentofMathematics,UtrechtUniversity,Utrecht,TheNetherlands,e-mailvorst@math.uu.nl1eliminationapproach.Inthispaper,wewillsketchthedevelopmentsandprogressthathastakenplaceinthetwentiethcenturywithrespecttoiterativemethodsalone.Aswillbeclear,thissubeldcouldnotevolveinisolation,andthedistinctionbetweeniterativemethodsandGaussianeliminationmethodsissometimesarticial-andoverlapbetweenthetwomethodologiesissignicantinmanyinstances.Nevertheless,eachofthetwohasitsowndynamicsanditmaybeofinteresttofollowoneofthemmoreclosely.Itislikelythatfutureresearchersinnumericalmethodswillregardthedecadejustpassedasthebeginningofanerainwhichiterativemethodsforsolvinglargelinearsystemsofequationsstartedgainingconsiderableacceptanceinreal-lifeindustrialapplications.Inlookingatpastliterature,itisinterestingtoobservethatiterativeanddirectmethodshaveoftenbeenincompetitionforsolvinglargesystemsthatariseinapplications.Aparticulardiscoverywillpromoteagivenmethodfromonecamponlytoseeanotherdiscoverypromoteacompetingmethodfromtheothercamp.Forexample,the50sand60ssawanenormousinterestinrelaxation-typemethods-promptedbythestudiesonoptimalrelaxationandtheworkbyYoung,Varga,Southwell,Frankelandothers.Alittlelater,sparsedirectmethodsappearedthatwereverycompetitive-bothfromthepointofviewofrobustnessandcomputationalcost.Tothisday,therearestillapplicationsdominatedbydirectsolversandothersdominatedbyiterativesolvers.Becauseofthehighmemoryrequirementofdirectsolvers,itwassometimesthoughtthatthesewouldeventuallybereplacedbyiterativesolvers,inallapplications.However,thesuperiorrobustnessofdirectsolverspreventedthis.Ascomputershavebecomefaster,verylargeproblemsareroutinelysolvedbymethodsfrombothcamps.Iterativemethodswere,evenhalfwayinthetwentiethcentury,notalwaysviewedaspromising.Forinstance,Bodewig[22,p.153],in1956,mentionedthefollowingdrawbacksofiterativemethods:nearlyal

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功