简单随机抽样的定义:设一个总体有N个个体,从总体中逐个不放回抽取一定样本,且每个个体被抽到的机会相等。1、简单随机抽样:1.抽签法:①编号②搅拌均匀.③逐个不放回抽取n次。2、随机数法:①编号②在随机数表中确定初始位置③确定读数方向,取数。一个总体的60个个体编号为00,01,02,…,59,现在需从中抽取一容量为8的样本,请随机数表的第四行第五列开始向下数,则抽取出样本是?一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.2.系统抽样分段间隔:Nkn例题:为了了解高一年级12000名学生的数学成绩,需要抽取容量为120的样本,请用合适的方法抽取.思考:如果用系统抽样从503名学生中抽取50人进行调查,应如何进行?当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样。其中所分成的各部分叫做层。3.分层抽样思考:某单位有职工500人,其中35岁以下——125人;35~49岁——280人;50岁上——95人;为了解该单位职工身体状况的某项指标,要抽一个100人的样本,该怎样抽取?=该层个体数第几层抽取的个体数样本容量总体容量练习某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为n的样本进行调查,如果应从高中生中抽取60人,那么n=C2.从容量为N的总体中抽取容量为n的样本,若用系统抽样法.则抽样间隔为………()A.N/nB、nC.[N/n]D.[N/n]+1练习:1、为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,则分段的间隔k为_____3、要从已编号(1~50)的50枚最新研制的导弹中随机抽取5枚来进行发射实验,用系统抽样的方法确定所选5枚导弹的编号可能是()A、5,10,15,20,25B、3,13,23,33,43C、1,2,3,4,5D、2,4,8,16,32B404.为了分析高三年级的l0个班500名学生第一次高考模拟考试的数学成绩。决定在10个班中每班随机扭取l2份试卷进行分析,这个问题中样本容量是…………()A.10B.500C.120D.120名学生的成绩5.某政府机关在职人员100人.其中副处级干部10人,一般干部70人,职员20人,上级机关为了解政府机构改革的意见,要从中抽一个容量为10人的样本,应选择………………()A.抽签法B.随机数表法C.系统抽样D.分层抽样DD6.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取一个容量为45的样本。那么高一、高二、高三各年级抽取人数分别为·………………………………………….()A.15,5,25B.15,l5,l5C.10,5,30D.15,l0,20D7.现有以下两项调查:①某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其装订质量状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1∶5∶9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A、简单随机抽样法,分层抽样法B、分层抽样法,简单随机抽样法C、分层抽样法,系统抽样法D、系统抽样法,分层抽样法D分组频数频率频率/组距频率分布表0.100.200.300.400.50月均用水量/t频率组距0.511.522.533.544.5O频率分布直方图3.频率分布直方图=第几组频数(1)第几组的频率样本容量=频率(2)纵坐标组距==频率(3)小长方形的面积组距频率组距12.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.频率组距49.574.599.5124.5149.5(1)求第四小组的频率和参加这次测试的学生人数;(2)在这次测试中,学生跳绳次数的中位数落在第几小组内?(3)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?0.2;50第3小组60%月均用水量/t频率组距0.50.40.30.20.10.511.522.533.544.5O众数:在频率分布直方图中,就是最高矩形的中点的横坐标。众数,中位数,平均数与频率分布直方图的关系中位数:中位数左边和右边的直方图面积相等。平均数:平均数的估计值等于每个小矩形面积乘以小矩形底边中点的横坐标之和。频率分布直方图元件寿命时间t频率组距0.0010.0020.0030.004100200300400500600O从频率分布直方图中估计众数、中位数和平均数?答案:众数是350;中位数是362.5;数平均是0.1×150+0.15×250+0.4×350+0.2×450+0.15×550=365某赛季甲、乙两名篮球运动员每场比赛得分的原始记录如下:(1)甲运动员得分:13,51,23,8,26,38,16,33,14,28,39(2)乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39甲乙021453836486398311554761694920茎叶图优点:能够保留原始数据,而且能够展示数据的分布情况。缺点:不适合样本容量很大或茎、叶不分明的样本数据.5.茎叶图6.标准差方程标准差是样本数据到平均数的一种平均距离,一般用S表示。22212()()...()nxxxxxxsns≥0标准差为0的样本数据都相等!标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.2222121()()().nsxxxxxxn方差1.数据70,71,72,73的标准差是()25.D2.C45.B2.AD自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.(特点:不确定性)在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.6.相关关系7.散点图【练一练】1.在下列各变量之间的关系中:①汽车的重量和百公里耗油量.②正n边形的边数与内角度数之和.③一块农田的小麦产量与施肥量.④家庭的经济条件与学生的学习成绩.是相关关系的有()(A)①②(B)①③(C)②③(D)③④x1x2x3xnxy1y2y3yny线性回归方程:一般地,设有n个观察数据如下:……2221122()()...()nnQybxaybxaybxaˆybxa当a,b使取得最小值时,就称这n对数据的线性回归方程,该方程所表示的直线称为回归直线.为拟合.______y25x81.05x.0y.1^的估计值为时,,则已知回归方程.________a_______,__________b.2数用最小二乘法求回归系11.69n1i2n1ii2in1in1iin1iiiixxnyxyxnxby3.三点(3,10),(7,20),(11,24)的线性回归方程是()ˆA.5.751.75yxˆB.1.755.75yxˆC.1.755.75yxˆD.5.751.75yxDˆ4.0,0.,0.0,.,ybxaABxCyDxy、线性回归方程必过点()5.21.5.1.521.52yxxAyyyy设一个直线回归方程,则变量增加一个单位时平均增加个单位B.平均增加个单位C.平均减少个单位D.平均减少个单位DC