二次函数与一元二次方程温故知新(1)一次函数y=x+2的图象与x轴的交点为(,)一元一次方程x+2=0的根为________(2)一次函数y=-3x+6的图象与x轴的交点为(,)一元一次方程-3x+6=0的根为________思考:一次函数y=kx+b的图象与x轴的交点与一元一次方程kx+b=0的根有什么关系?一次函数y=kx+b的图象与x轴的交点的横坐标就是一元一次方程kx+b=0的根-20-22020322xxxy…-2-101234……70-3-4-307…(1,-4)NM当x为何时,y=0?写出二次函数的顶点坐标,对称轴,并画出它的图象.322xxyx=-1,x=3x=-1,x=312观察探究一:你的图象与x轴的交点坐标是什么?函数y=x2-2x-3的图象与x轴两个交点为(-1,0)(3,0)方程x2-2x-3=0的两根是x1=-1,x2=3你发现了什么?(1)二次函数y=ax2+bx+c与x轴的交点的横坐标就是当y=0时一元二次方程ax2+bx+c=0的根(2)二次函数的交点问题可以转化为一元二次方程去解决例题精讲1.求二次函数y=x2+4x-5与x轴的交点坐标解:令y=0则x2+4x-5=0解之得,x1=-5,x2=1∴交点坐标为:(-5,0)(1,0)结论一:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(),B()思考:函数y=-x2+6x-9和y=2x2+3x+5与x轴的交点坐标是什么?试试看!X1,0X2,0观察二次函数的图象和二次函数的图象,分别说出一元二次方程和的根的情况.962xxy322xxy0962xx0322xx962xxy322xxy观察二探究二:二次函数与x轴的交点个数与一元二次方程的解有关系吗?结论二:函数与x轴有两个交点方程有两不相等根函数与x轴有一个交点方程有两相等根函数与x轴没有交点方程没有根方程的根的情况是由什么决定的?判别式b2-4ac的符号结论三:对于二次函数y=ax2+bx+c,判别式又能给我们什么样的结论?(1)b2-4ac>0函数与x轴有两个交点(2)b2-4ac=0函数与x轴有一个交点(3)b2-4ac<0函数与x轴没有交点二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根b2-4ac0只有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac0二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac0b2–4ac=0b2–4ac0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0△>0△=0△<0OXY二次函数y=ax2+bx+c的图象和x轴交点判别式:b2-4ac二次函数y=ax2+bx+c(a≠0)图象一元二次方程ax2+bx+c=0(a≠0)的根xyO与x轴有两个不同的交点(x1,0)(x2,0)有两个不同的解x=x1,x=x2b2-4ac>0xyO与x轴有唯一个交点)0,2(ab有两个相等的解x1=x2=ab2b2-4ac=0xyO与x轴没有交点没有实数根b2-4ac<0例题精讲2.判断下列二次函数图象与x轴的交点情况(1)y=x2-1;(2)y=-2x2+3x-9;(3)y=x2-4x+4;(4)y=-ax2+(a+b)x-b(a、b为常数,a≠0)解:(1)∵b2-4ac=02-4×1×(-1)>0∴函数与x轴有两个交点例题精讲2.判断下列二次函数与x轴的交点情况(1)y=x2-1;(2)y=-2x2+3x-9;(3)y=x2-4x+4;(4)y=-ax2+(a+b)x-b(a、b为常数,a≠0)解:(2)∵b2-4ac=32-4×(-2)×(-9)<0∴函数与x轴没有交点例题精讲2.判断下列二次函数与x轴的交点情况(1)y=x2-1;(2)y=-2x2+3x-9;(3)y=x2-4x+4;(4)y=-ax2+(a+b)x-b(a、b为常数,a≠0)解:(3)∵b2-4ac=42-4×1×4=0∴函数与x轴有一个交点例题精讲2.判断下列二次函数与x轴的交点情况(1)y=x2-1;(2)y=-2x2+3x-9;(3)y=x2-4x+4;(4)y=-ax2+(a+b)x-b(a、b为常数,a≠0)解:(4)∵b2-4ac=(a+b)2-4×(-a)×(-b)=(a-b)2≥0∴函数与x轴有一个或两个交点联想:二次函数与x轴的交点个数可以借助判别式解决,那么二次函数与一次函数的交点个数又该怎么解决呢?例如,二次函数y=x2-2x-3和一次函数y=x+2有交点吗?有几个?分析:两个函数的交点是这两个函数的公共解,先列出方程组,消去y后,再利用判别式判断即可.例题精讲3.二次函数y=x2-x-3和一次函数y=x+b有一个公共点(即相切),求出b的值.解:由题意,得消元,得x2-x-3=x+b整理,得x2-2x-(3+b)=0∵有唯一交点∴(-2)2+4(3+b)=0解之得,b=-4y=x2-x-3y=x+b用图象法求一元二次方程的近似解练习:根据下列表格的对应值:判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()A3X3.23B3.23X3.24C3.24X3.25D3.25X3.26x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09CC个个D.个C.轴的交点个数有与抛物线321.0.).(32)1(2BAxxyx(2).若抛物线y=ax2+bx+c,当a0,c0时,图象与x轴交点情况是()A无交点B只有一个交点C有两个交点D不能确定C(5)已知抛物线y=x2–8x+c的顶点在x轴上,则c=____.16(7)抛物线y=x2-kx+k-2与x轴交点个数为()A、0个B、1个C、2个D、无法确定C第四象限第三象限第二象限第一象限的顶点在抛物线则没有实数根的一元二次方程关于....).(,0)6(22DCBAnxynxxxxA?5、已知二次函数y=x2-mx-m2(1)求证:对于任意实数m,该二次函数的图像与x轴总有公共点;(2)该二次函数的图像与x轴有两个公共点A、B,且A点坐标为(1、0),求B点坐标。.,02402,0:)1(9)(22222轴总有公共点抛物线与取何值不论得令证明xmmxymmmmx)0,2(1,20)1)(2(,02120)0,1()2(212222212点坐标为 即上在抛物线BmmmmmxyAmmmmmx问题1:如图,以40m/s的速度将小球沿与地面成30度角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t–5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?若能,需要多少时间?(4)球从飞出到落地要用多少时间?解:(1)解方程15=20t-5t²t²-4t+3=0t=1,t=3.当球飞行1s和2s时,它的高度为15m。?12ht(2)解方程20=20t-5t²t²-4t+4=0t=t=2.当球飞行2s时,它的高度为20m。122(4)解方程0=20t-5t²t²-4t=0t=0,t=4.当球飞行0s和4s时,它的高度为0m,即0s飞出,4s时落回地面。(3)解方程20.5=20t-5t²t²-4t+4.1=0∵(-4)²-4*4.1<0,∴方程无实数根1(2、20)方法:(1)先作出图象;(2)写出交点的坐标;(-1.3、0)、(2.3、0)(3)得出方程的解.x=-1.3,x=2.3。利用二次函数的图象求方程x2-x-3=0的实数根(精确到0.1).?xy1用你学过的一元二次方程的解法来解,准确答案是什么?交流总结同学们,通过这节课的学习,你收获了什么?