12.2全等三角形判定一SSS

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ABC1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形。2.全等三角形有什么性质?全等三角形的对应边相等,对应角相等3.已知,试找出其中相等的边与角EFDABC≌DFAC,FEBC,EDAB===FCE,BD,A===EFDABC≌DEFABC即:三条边对应相等,三个角对应相等的两个三角形全等。DEFDFCA3FEBC2EDAB1=)(=)(=)(EFDABC中,有和在FC6EB5DA4=)(=)(=)(1.满足这六个条件可以保证△ABC≌△DEF吗?2.如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?一个条件可以吗?1.有一条边相等的两个三角形不一定全等探究活动2.有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等.60o300不一定全等1.有两个角对应相等的两个三角形两个条件可以吗?3.有一个角和一条边对应相等的两个三角形2.有两条边对应相等的两个三角形不一定全等30060o4cm不一定全等30o6cm结论:探究活动三个条件呢?探究活动1.三个角;2.三条边;3.两边一角;4.两角一边。如果给出三个条件,你能说出有哪几种可能的情况?结论:三个内角对应相等的三角形不一定全等。探究活动1.有三个角对应相等的两个三角形60o30030060o三个条件已知三角形的三个角分别为30°、60°、90°已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,把所画的三角形分别剪下来,并与同伴比一比,发现什么?探究新知2.三条边对应相等的两个三角形三个条件三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。用上面的结论可以判定两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.结论ABCDEF三边对应相等的两个三角形全等.(简写成“边边边”或“SSS”)几何语言:中和在EFDABCFDCAFEBCEDAB(SSS)EFD≌ABC结论∴△ABC△ADC(SSS)例1已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADCABCDACAC()≌AB=AD()BC=CD()证明:在△ABC和△ADC中=已知已知公共边分析:要证明△ABC≌△ADC,首先看这两个三角形的三条边是否对应相等。已知:如图,AC=AD,BC=BD.求证:∠C=∠D.ABCD证明:在△ACB和△ADB中AC=ADBC=BDAB=AB∴△ACB≌△ADB(SSS)连结AB∴∠C=∠D.(全等三角形对应角相等)例2:(已知)(已知)(公共边)已知:如图,点B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠DCABDFE证明:∴△ABC≌△DEF(SSS)在△ABC和△DEF中AB=DEAC=DFBC=EF(已知)(已证)∴∠A=∠D(全等三角形的对应角相等)∵BE=CF∴BC=EF∴BE+EC=CF+CE(等式性质)例3:(已知)1、准备条件:证全等时要用的间接条件要先证好;2、三角形全等书写三步骤:写出在哪两个三角形中摆出三个条件用大括号括起来写出全等结论证明的书写步骤:1、已知:AB=AC,AE=AD,BD=CE求证:△AEB≌△ADCCABDE练习2、如图,△ABC是钢架,AB=AC,AD是连结点A与BC中点D的支架.求证:AD⊥BCACD12BABCD3、已知:AD=BC,AC=BD,求证:∠CAD=∠DBC练习4、已知:AC、BD相交于O点,AB=DC,AC=BD,求证:∠A=∠D工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC便是AOB的平分线.为什么?课本P37中,和解:在CNOCMOOMABNCCOCOCNCMONOM,=,=,=.AOBOC的平分线是.SSSCNOCMO)(≌.CONCOM=(全等三角形对应角相等)(已知)(已知)(公共边)如图,AB=AC,AE=AD,BD=CE,求证:△AEB≌△ADC。证明:∵BD=CE∴BD-ED=CE-ED,即BE=CDCABDE在AEB和ADC中,AB=AC(已知)AE=AD(已知)BE=CD(已证)∴△AEB≌△ADC(sss)CBDAFEDB思考已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?解:要证明△ABC≌△FDE,还应该有AB=DF这个条件∵AD=FB∴AD+DB=FB+DB即AB=FD思考.FDABDBFBDBADFBAD即,,证明:FDBABC中,和在FBACDBBCFDAB(已知),=(已知),=(已证),=.SSSFDB≌ABC)(CBDAFEDB已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?练习1:如图,AB=AC,BD=CD,BH=CH,图中有几组全等的三角形?它们全等的条件是什么?HDCBA解:有三组。在△ABH和△ACH中,∵AB=AC,BH=CH,AH=AH,∴△ABH≌△ACH(SSS);在△ABD和△ACD中,∵AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD(SSS);在△DBH和△DCH中∵BD=CD,BH=CH,DH=DH,∴△DBH≌△DCH(SSS).(2)如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件.BCBC△DCBBF=DC或BD=FCABCD练习2解:△ABC≌△DCB理由如下:AB=DCAC=DB=△ABC≌()SSS(1)如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由。AEBDFC练习3、如图,在四边形ABCD中,AB=CD,AD=CB,求证:∠A=∠C.DABC•证明:在△ABD和△CDB中AB=CDAD=CBBD=DB∴△ABD≌△CDB(SSS)(已知)(已知)(公共边)∴∠A=∠C(全等三角形的对应角相等)你能说明AB//CD,AD//BC吗?解:①∵E、F分别是AB,CD的中点()又∵AB=CD∴AE=CF在△ADE与△CBF中DE==∴△ADE≌△CBF()∴AE=ABCF=CD()1212补充练习:如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.①△ADE≌△CBF②∠A=∠C线段中点的定义BFADAECFSSS△ADE≌△CBF全等三角形对应角相等已知ADBCFECB②∵∴∠A=∠C()=请同学们谈谈本节课的收获与体会本节课你学到了什么?发现了什么?有什么收获?还存在什么没有解决的问题?小结2.三边对应相等的两个三角形全等(简写成“边边边”或“SSS”);1.知道三角形三条边的长度怎样画三角形;3.初步学会理解证明的思路,应用“边边边”证明两个三角形全等.作业:1、一张试卷2、笔记补充完整Over!

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功