圆柱的表面积教材分析教学目标分析教法、学法分析教学过程分析一、教材分析教材的地位和作用及学生的学习情况。圆柱表面积的计算是九年义务教育六年制小学数学第十二册第二单元的学习内容,应当在学生掌握了长方形以及圆的面积计算的基础上进行教学。这部分内容的学习为后面学习一些立体几何知识打下基础。二、教学目标分析空间与图形知识是为了培养学生抽象概括能力、思维能力、建立空间观念的能力。结合本节课的教学内容和学生的学习情况,从知识、能力和情感三个方面来制定目标:1、知识与技能。通过想象和操作等活动,加深对圆柱特征的认识,理解圆柱表面积的的含义,知道圆柱的侧面展开后可以是一个长方形。2、过程与方法。学生通过触摸、观察、操作等多种方法提高分析、概括的能力,理解空间观念,并能利用知识合理灵活地分析、解决实际问题。结合具体的情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。3、情感态度与价值观让学生亲身体验到数学活动充满着探索性和挑战性,通过自主探索和合作交流,使他们敢于发表自己的见解,能够从交流中获益。通过学生们自己的认识来制定教学目标符合学生学习数学的认知规律,让他们亲身经历问题的解决过程,提高他们对问题的感性认识,经过一系列的实践和计算,提高他们对问题的理性认识。能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中的一些简单的实际问题,体会数学与生活的联系;培养学生的观察、操作、想象能力,发展学生的空间观念,渗透转化的思想。也可以培养学生良好的个性品质,包括大胆猜想勇于探索的创新精神,顽强的学习毅力等。三、教学重难点本课的重点是:探索圆柱体侧面积、表面积的计算方法,并能运用圆柱侧面积和表面积的计算方法解决生活中的一些简单的实际问题。本课的难点是:理解圆柱侧面展开的多样性,将展开图与圆柱的各部分联系起来,并推导出圆柱体侧面积和表面积的计算公式。而解决这一难点的关键是:把圆柱体的侧面展开后所得到的长方形各部分同圆柱体各部分间的关系。四、教法、学法分析由于圆柱侧面积和表面积的概念比较抽象,学生很难理解,所以我主要运用了与学生共同探究的教学方法,让学生采取自主式、合作式、探讨式的学习方法,通过与学生共同制作圆柱模型,启发诱导学生通过探索、归纳,得出圆柱侧面积和表面积的计算方法。并给学生足够的时间自主探究、动手实践,培养学生的合作意识和探究精神。根据新课程的教学理念,使数学知识与学生的生活实际紧密结合在一起,运用圆柱的侧面积和表面积的计算解决生活中的实际问题。五、教学过程分析为了完成本节课的教学目标,体现合作学习的有效性,突出《空间与图形》这个内容的教学特点,我设计的教学环节分别是复习导入、设下悬念、动手操作、例题解剖、巩固练习、反思小结、设置问题这七个方面。下面我将对每个环节分别从教什么、怎么教、为何这样教三个方面加以说明:(一)复习导入,探求新知(1)我们学过的圆的周长是怎么计算的?面积呢?(2)长方形的面积呢?(3)圆柱有哪些特征?以上设计让学生逐题完成,通过个人汇报——集体评价的形式来进行。让学生在复习中进一步掌握圆柱的特征,回顾圆的周长和面积的计算方法及长方形的面积的计算方法。这些知识完全与圆柱的侧面积和表面积的计算有关,为下一步探索圆柱的侧面积和表面积计算方法作好铺垫,同时也让学生领会到新旧知识之间的联系,充分体现数学知识的前后连贯性。(三)动手操作,探究规律通过让学生自己动手用一张纸做一个简单的圆柱形纸盒,教师再拿实物演示(把八宝粥瓶子剪开)以及观看动画等系列活动引导他们探究圆柱的特征,发现规律。例如:侧面的长=底面周长、侧面的宽=圆柱的高,还有本节课重点S圆柱=S侧面积+2×S底面积=c×h+2×πr2=2πr×h+2×πr2。底面底面底面底面底面底面底面底面底面底面底面底面底面底面的周长底面高解:(1)S侧面积=2×3.14×2×5=62.8(平方厘米)(2)S底面积=3.14×22=12.56(平方厘米)(3)S圆柱=S侧面积+2×S底面积=62.8+2×12.56=87.92(平方厘米)(四)例题解剖,引导学习1、一个圆柱底面半径是2dm,高是5dm,求它的表面积?让学生上讲台作答,其他学生在下面完成。我下去督促、指导、与他们交流,给一些表现好的同学适当的表扬、树立榜样,给一些听课不够认真的同学也适当的表扬,让他们树立信心、找回信念,活跃课堂,更有益于教学目标的完成。(五)巩固练习,拓展知识通过设计一系列由易到难的练习,逐渐加深知识层次的梯度,全面兼顾各种成绩的学生。(主要是加强学生的知识基础和解题能力的训练,把数学知识应用于生活实际。)计算下现各圆柱的表面积。(单位:厘米)20.2103一台压路机的前轮是圆柱形,轮宽2m,直径1.2m。前轮转动一周,压路的面积是多少平方米?1.2×3.14×2=3.768×2=7.536(平方米)答:压路的面积是7.536平方米。一顶圆柱形厨师帽,高28厘米,帽顶直径20厘米,做这样一顶帽子需要用多少面料(得数保留整十平方厘米)?(六)反思小结,加强记忆让学生自主总结“本节课学习了什么?”训练他们的知识整合能力和语言表达能力;将主动性交给学生,更能提高学生的参与意识和进取精神;适度的表扬他们,让他们觉得自己也可以学的很好,从而对数学产生浓厚的兴趣;指导他们把本节课的知识做一个系统概括,从而形成一个新的知识体系。(七)设置问题,提升思维,课后思考如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?附:板书设计2.1.2圆柱的表面积圆的周长:C=πd=2πr侧面的长(或宽)=底面周长圆的面积:S圆=πr2侧面的宽(或长)=圆柱的高长方形的面积:S长方形=长×宽圆柱的侧面积:S侧面积=S长方形=c×h=π×2r×h圆柱的表面积:S圆柱=S侧面积+2×S底面积=2πr×h+2×πr2谢谢制作:陈明清