TrainingManual熨斗稳态和循环加载热分析TrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-Goals•Inthisworkshop,wewillanalyzetheelectricallyheatedbasetypicalofconsumersteamironsliketheoneshownbelow.TrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-AssumptionsAssumptions:•Theheatingelementcontactsandtransfersheattothebaseusingthepatternshownhere•Uponinitialstartupaheatfluxof0.001W/mm2isapplieduntilasteadystateisreached•Heatingfollowsa30secondstepcycleof0to0.003W/mm2aftersteadystateisreached•TheanalysiswillbeginwiththesteadystatesolutionandproceedthroughthecyclicloadingdescribedaboveTrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-StartPage•FromthelauncherstartSimulation.•Choose“GeometryFromFile...“andbrowsetothefile“Iron.x_t”.•WhenDSstarts,closetheTemplatemenubyclickingthe‘X’inthecornerofthewindow.TrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-Preprocessing•Changethepartmaterialto“StainlessSteel”:1.Highlight“Part1”2.IntheDetailwindow“Material”field“Import...”3.“Choose”material“StainlessSteel”1234.Settheworkingunitsto(mm,kg,N,C,s,mV,mA)“ToolsUnits”menuchoose4TrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-Environment5.Selectsurfacerepresentingtheheatingelementonthefaceoftheiron6.“RMBInsertHeatFlux”.7.Set“Magnitude”fieldto0.001W/mm2756TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-Environment8.Selectthebottomsurface(oppositetheheatfluxside)and6sidesurfacesoftheiron(7faces)9.“RMBInsertConvection”10.Changeto“TemperatureDependent”11.Choose“Import”inthecorrelationfield12.Select“StagnantAir–VerticalPlanes1”13.Setambienttemperatureto20deg.C8912111013TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-Environment14.Selectthe2surfacessurroundingtheheatedsurface15.“RMBInsertConvection”16.Changeto“TemperatureDependent”17.Choose“Import”inthecorrelationfield18.Select“StagnantAir–VerticalPlanes”19.Setambienttemperatureto40deg.C1415181617TrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-Solution•Addtemperatureandtotalheatfluxresults.20.HighlighttheSolutionbranch.21.“RMBInsertThermalTemperature”,repeatfortotalheatflux22.Solve222021TrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-Results•Areviewoftheresultsshowsthemaximumsteadystatetemperatureisapproximately51.7degreesC•Theworksheetviewoftheenvironmentshowsthatanenergybalancehasbeenachieved–Convection1+Convection2≈5.2758W–AppliedLoad=0.001W/mm2*Area•Area≈5276.2mmTrainingManualANSYSWorkbench-DesignModelerWorkshop6.2–TransientSolution23.Highlightthe“Temperature”result,RMB“GenerateTransientEnvironmentwithInitialCondition”23•Theresultis,thesteadystateenvironmentisduplicatedandthenewbranchautomaticallysetupasathermaltransientrun–Noticethenewbranchcontainsan“initialcondition”branchanda“transientsettings”branchTrainingManualANSYSWorkbench-DesignModelerWorkshop6.2–TransientSetup24.Beginthetransientsetupbyspecifyinganendtimeof180secondsfortheanalysisinthetoolbar25.Inspectionoftheinitialconditiondetailsshowsnoactionisrequired.Thesteadystate(non-uniform)temperatureresultfromthe“Environment”branchismappedtothetransientbranch2425TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientSetup26.Highlight“HeatFlux”intheThermalTransientbranch27.Intheheatfluxdetailchange“DefineAs”to“LoadHistory”28.Inthe“HistoryData”fieldchoose“NewLoadHistory...“262728TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientSetup•TheEngineeringDataapplicationwillopenandanew“HeatFluxvs.Time”chart/graphwillbecreated•EnterthetimeandloaddataasshownonthenextpageTrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientSetup29.Entertimeandloadinformationasdescribedintheproblemstatement–30secondincrements–0.003W/mm2HeatFlux29TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientSetup30.Highlightthe“TransientSettings”branch31.Toggleoffallitemsbut“HeatFlux”inthe“Visible”and“Active”columnsoftheTimelineLegendControl3130Noticetheautomatictimestepsarebasedontheendtime:Initial=ET/100,Min=ET/1000,Max=ET/10LeavetimestepsasdefaultTrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientSetup•Togglingoffallbuttheheatfluxallowseasierinspectionofthetimelinechartinthiscase•Sincetheheatfluxistheonlyloaddefinedasa“non-constant”itwillhavetheonlyinfluenceontheplacementoftheautomaticstepresetsResetpointsAsexpected,eachresetpointcoincideswithaninflectionpointontheloadhistoryTrainingManualANSYSWorkbench-DesignModelerWorkshop6.2-TransientResults32.Solvethethermaltransientbranch•Whenthesolutioniscomplete,resultscanbereviewedjustaswithsteadystatesolutions33.Highlightthequantityofinteresttoplot313332TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientResults34.Toreviewresultsfromspecifictimepoints,LMBinthetimelinecharttolocatethetimeofinterest35.RMBRetrieveResults3435TrainingManualANSYSWorkbench-DesignModeler...Workshop6.2-TransientResults•Notice,whenanewtimepointisselectedinthetimeline,theresultdetailisdisplayedinreduntiltheresultsmatchingthetimeselectionareretrieved•Plottingthe“GlobalMaximum”temperaturefromtheSolutionInformationbranc