《导数及其应用》一、选择题1.0()0fx是函数fx在点0x处取极值的:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2、设曲线21yx在点))(,(xfx处的切线的斜率为()gx,则函数()cosygxx的部分图象可以为A.B.C.D.3.设()fx是函数()fx的导函数,将()yfx和()yfx的图象画在同一个直角坐标系中,不可能正确的是()4.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-15.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于()A.2B.3C.4D.56.设函数fx的导函数为fx,且221fxxxf,则0f等于()A、0B、4C、2D、27.直线yx是曲线lnyax的一条切线,则实数a的值为()A.1B.eC.ln2D.18.若函数)1,1(12)(3kkxxxf在区间上不是单调函数,则实数k的取值范围()A.3113kkk或或B.3113kk或C.22kD.不存在这样的实数k9.函数fx的定义域为,ab,导函数fx在,ab内的图像如图所示,则函数fx在,ab内有极小值点()A.1个B.2个C.3个D.4个10.已知二次函数2()fxaxbxc的导数为'()fx,'(0)0f,对于任意实数x都有()0fx,则(1)'(0)ff的最小值为()A.3B.52C.2D.32二、填空题(本大题共4个小题,每小题5分,共20分)11.函数sinxyx的导数为_________________12、已知函数223)(abxaxxxf在x=1处有极值为10,则f(2)等于____________.13.函数2cosyxx在区间[0,]2上的最大值是14.已知函数3()fxxax在R上有两个极值点,则实数a的取值范围是15.已知函数)(xf是定义在R上的奇函数,0)1(f,0)()(2xxfxfx)(0x,则不等式0)(2xfx的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16.设函数32()2338fxxaxbxc在1x及2x时取得极值.(1)求a、b的值;(2)若对于任意的[03]x,,都有2()fxc成立,求c的取值范围.17.已知函数32()233.fxxx(1)求曲线()yfx在点2x处的切线方程;(2)若关于x的方程0fxm有三个不同的实根,求实数m的取值范围.OxxxxyyyyOOO18.设函数Rxxxxf,56)(3.(1)求)(xf的单调区间和极值;(2)若关于x的方程axf)(有3个不同实根,求实数a的取值范围.(3)已知当)1()(,),1(xkxfx时恒成立,求实数k的取值范围.19.(本题满分12分)已知函数()lnfxxx.(Ⅰ)求()fx的最小值;(Ⅱ)若对所有1x都有()1fxax,求实数a的取值范围.20.已知Raxxaaxxf14)1(3)(23(1)当1a时,求函数的单调区间。(2)当Ra时,讨论函数的单调增区间。(3)是否存在负实数a,使0,1x,函数有最小值-3?21.已知函数2afxxx,lngxxx,其中0a.(1)若1x是函数hxfxgx的极值点,求实数a的值;(2)若对任意的12,1xxe,(e为自然对数的底数)都有1fx≥2gx成立,求实数a的取值范围.《导数及其应用》参考答案一、选择题:题号12345678910答案DADADBDBAC二、填空题:11.2cossin'xxxyx;12.1813.36;14.}0|{aa;15.),1()0,1(三、解答题16.解:(1)2()663fxxaxb,因为函数()fx在1x及2x取得极值,则有(1)0f,(2)0f.即6630241230abab,.解得3a,4b.(2)由(Ⅰ)可知,32()29128fxxxxc,2()618126(1)(2)fxxxxx.当(01)x,时,()0fx;当(12)x,时,()0fx;当(23)x,时,()0fx.所以,当1x时,()fx取得极大值(1)58fc,又(0)8fc,(3)98fc.则当03x,时,()fx的最大值为(3)98fc.因为对于任意的03x,,有2()fxc恒成立,所以298cc,解得1c或9c,因此c的取值范围为(1)(9),,..17.解(1)2()66,(2)12,(2)7,fxxxff………………………2分∴曲线()yfx在2x处的切线方程为712(2)yx,即12170xy;……4分(2)记322()233,()666(1)gxxxmgxxxxx令()0,0gxx或1.…………………………………………………………6分则,(),()xgxgx的变化情况如下表x(,0)0(0,1)1(1,)()gx00()gx极大极小当0,()xgx有极大值3;1,()mxgx有极小值2m.………………………10分由()gx的简图知,当且仅当(0)0,(1)0gg即30,3220mmm时,函数()gx有三个不同零点,过点A可作三条不同切线.所以若过点A可作曲线()yfx的三条不同切线,m的范围是(3,2).…………14分18.解:(1)2,2,0)(),2(3)(212xxxfxxf得令…………………1分∴当22()0;22,()0xxfxxfx或时,当时,…………………2分∴)(xf的单调递增区间是(,2)(2,)和,单调递减区间是)2,2(……3分当245)(,2有极大值xfx;当245)(,2有极小值xfx.…………4分(2)由(1)可知)(xfy图象的大致形状及走向(图略)∴当)(,245245xfyaya与直线时的图象有3个不同交点,……6分即当542542a时方程)(xf有三解.…………………………………7分(3))1()5)(1()1()(2xkxxxxkxf即∵),1(5,12在xxkx上恒成立.…………………………………………9分令5)(2xxxg,由二次函数的性质,),1()(在xg上是增函数,∴,3)1()(gxg∴所求k的取值范围是3k……………………………………12分19.解析:()fx的定义域为0(,+),…………1分()fx的导数()1lnfxx.………………3分令()0fx,解得1ex;令()0fx,解得10ex.从而()fx在10e,单调递减,在1e,+单调递增.………………5分所以,当1ex时,()fx取得最小值1e.…………………………6分(Ⅱ)解法一:令()()(1)gxfxax,则()()1lngxfxaax,……………………8分①若1a,当1x时,()1ln10gxaxa,故()gx在(1),+上为增函数,所以,1x时,()(1)10gxga,即()1fxax.……………………10分②若1a,方程()0gx的根为10eax,此时,若0(1)xx,,则()0gx,故()gx在该区间为减函数.所以0(1)xx,时,()(1)10gxga,即()1fxax,与题设()1fxax相矛盾.……………………13分综上,满足条件的a的取值范围是(1],.……………………………………14分解法二:依题意,得()1fxax在[1),上恒成立,即不等式1lnaxx对于[1)x,恒成立.……………………8分令1()lngxxx,则21111()1gxxxxx.……………………10分当1x时,因为11()10gxxx,故()gx是(1),上的增函数,所以()gx的最小值是(1)1g,………………13分所以a的取值范围是(1],.…………………………………………14分20.(1),2,x或,,2x)(xf递减;,2,2x)(xf递增;(2)1、当,0a,2,x)(xf递增;2、当,0a,2,2ax)(xf递增;3、当,10a,2,x或,,2ax)(xf递增;当,1a,,x)(xf递增;当,1a,2,ax或,,2x)(xf递增;(3)因,0a由②分两类(依据:单调性,极小值点是否在区间[-1,0]上是分类“契机”:1、当,2,12aa,2,20,1ax)(xf递增,3)1()(minfxf,解得,243a2、当,2,12aa由单调性知:3)2()(minafxf,化简得:01332aa,解得,26213a不合要求;综上,43a为所求。21.(1)解法1:∵22lnahxxxx,其定义域为0,,∴2212ahxxx.∵1x是函数hx的极值点,∴10h,即230a.∵0a,∴3a.经检验当3a时,1x是函数hx的极值点,∴3a.解法2:∵22lnahxxxx,其定义域为0,,∴2212ahxxx.令0hx,即22120axx,整理,得2220xxa.∵2180a,∴0hx的两个实根211184ax(舍去),221184ax,当x变化时,hx,hx的变化情况如下表:x20,x2x2,xhx—0+hx极小值依题意,211814a,即23a,∵0a,∴3a.(2)解:对任意的12,1xxe,都有1fx≥2gx成立等价于对任意的12,1xxe,都有minfx≥maxgx.当x[1,e]时,110gxx.∴函数lngxxx在1e,上是增函数.∴max1gxgee.∵2221xaxaafxxx,且1,xe,0a.①当01a且x[1,e]时,20xaxafxx,∴函数2afxxx在[1,e]上是增函数,∴2min11fxfa.由21a≥1e,得a≥e,又01a,∴a不合题意.②当1≤a≤e时,若1≤x<a,则20xaxafxx,若a<x≤e,则20xaxafxx.∴函数2afxxx在1,a上是减函数,在ae,上是增函数.∴min2fxfaa.由2a≥1e,得a≥12e,又1≤a≤e,∴12e≤a≤e.③当ae且x[1,e]时,20xaxafxx,∴函数2afxxx在1e,上是减函数.∴2minafxfeee.由2aee≥1e,得a≥e,又ae,∴ae.综上所述,a的取值范围为1,2e