ACentralLimitTheoremforLocalMartingaleswithApplicationstotheAnalysisofLongitudinalDataS.A.MURPHYSeptember20,1996DepartmentofStatisticsPennsylvaniaStateUniversitySUMMARYAfunctionalcentrallimittheoremforalocalsquareintegrablemartingalewithpersistentdisconti-nuitiesisgiven.Bypersistentdiscontinuities,itismeantthatthemartingalehasjumpswhichdonotvanishasymptotically.Thiscentrallimittheoremismotivatedbyproblemsintheanalysisoflongitudinalandlifehistorydata.RunningHeadline:ACentralLimitTheoremforMartingalesKeywords:LongitudinalData,EventHistoryAnalysis,Non-ClassicalCentralLimitTheorem,Mar-tingaleResearchsupportedbyNSFgrantDMS-9307255andpartiallycarriedoutduringtheauthor’svisitwiththeEconometricsDept.,FreeUniversity,Amsterdam.11.INTRODUCTIONVerylittlerecentworkhasbeendoneonNon-ClassicalCentralLimitTheoremsinadditiontotheworkbyGill(1982)andthepaperbyLiptserandShiryaev(1983)whichislaterreformulatedinthebookbyJacodandShiryaev(1987).Thecentrallimittheoremgivenhereisbasedonthelatertwoworks,buttheconditionsgivenareamenabletoapplicationsinlifehistory/longitudinaldataanalysis.Lifehistory/longitudinaldatatypicallyinvolvesobservationofentitiesorindividualsoveraperiodoftime.Eventhoughthistypeofdatamaybethoughtofastheobservationofstochasticprocesses,thestatisticalanalysisisquitedi erent.Theanalysisoflifehistorydataisbasedontheobservationofseveralormanystochasticprocesseseachoverashorttimeperiodinsteadofobservationofaveryfew(orone)stochasticprocessesoveralongperiodoftime.Thereforetheasymptoticsgivenherewillbeforthenumberofindividuals/processesincreasingwithoutbound.Bothlongitudinalandlifehistorydatacanexpressedasobservationsofmarkedpointprocesses(ArjasandHaara,1992).Theeventtimesofthepointprocessarethetimesatwhichonecollectsinformationontheindividualsandthemarksaretheinformationcollected.Asymptoticresultsforestimatorsandteststatisticsarebasedonacentrallimittheoremforanestimatingequation.Theestimatingequationmaybebasedonthederivativeofthelogofthefullorpartiallikelihood.Thisderivativeformsalocalsquareintegrablemartingaleunderintegrabilityconditions(Andersenet.al.,1993).Moregenerally,estimatingequationscanbeconstructedbyparametrizingaspectsoftheconditionaldistributionoftheinformationcollectedatatimepointgiventhepast.Theseestimatingequationsareintegralswithrespecttothemarkedpointprocessandunderintegrabilityconditionsformlocallysquareintegrablemartingales(MurphyandLi,1993).Centrallimittheorems(Rebolledo,seeAndersenet.al.,1993)forcontinuoustimemartingalesassumethattheintensityofthejumpsofthemartingaleis(asymptotically)continuous.Howeveritiseasytoenvisionthesituationinwhichoneplanstomakemeasurementsoneachindividualatregularintervals(eg.every3months)butsomeindividualsappearearlierorlaterformeasurements.Thetimeatwhichtheindividualappearscoulddependonpasthistory,i.e.anappointmentforasickerpatientmaybescheduledearlierduetohealthconcerns(doctor’scareorpatientself-selection,Gr uger,KayandSchumacher,1991).Theasymptotic2analysisshouldallowforbothmeasurementstakenatrandomtimesandclumpingofmeasurements(atthe3monthintervals).Additionallyindividualsmaybelosttofollowuporcensored.Thetheorempresentedinthenextsectionwillalsoallowfordependencebetweenindividualswhichisduetothecensoringmechanismandtimedependentcovariates.The rsttheoremisgivenforalocalsquareintegrablemartingale.Nextthistheoremisspecializedtoacentrallimittheoremforintegralswithrespecttoamarkedpointprocess.Lastlymotivatingapplicationsarediscussed.Alloftheproofsareintheappendix.2.ACENTRALLIMITTHEOREMThe rsttheoremisthemostgeneralgivenhereandisforad-dimensionallocalsquareintegrablemartingale,MnwithMn(0)=0,de nedonastochasticbasis n;IFn;fIFntgt2+;Pn .AssociatedwithMnisamarkedpointprocesswhichcountsthejumpsofMn, Mn,andrecordsthesizesofthejumpsasfollows, n(dx;dt)=Ps3 Mn(s)6=0 Mn(s);s(dx;dt)(x2d)where uisaprobabilitymeasuregivingmass1tothepointu.Themarkedpointprocesshasapredictablecompensatorgivenby, n(dx;dt).Fortheprecisede nitionofthepredictablesigma eld,IFnp,andotherterminologyseeJacodandShiryaev(Chapter2,1987).UsingthismarkedpointprocessonecandecomposeMnintoacontinuouslocalsquareintegrablemartingale,Mcn,plusthecompensatedjumps,Mn( )=Mcn( )+R 0Rx( n(dx;dt) n(dx;dt)).Itisalwayspossibletowrite nas, n(dx;dt)=Kn(dx;t) n(dt)whereKn(dx;s)isatransitionfunctionfrom + n;IFnp to d;B(d) and nisapredictablenondecreasingprocess.LetJnbeasubsetofdiscontinuitiesof n.Thesewillbethepersistentjumpswhichwillcontributetothe xedjumpsofthelimitingGaussianprocess.Thejumpsof nwhicharenotcontainedinJnwillbeassumedtobeasymptoticallynegligible.Theaccumulationofinformationnecessaryforasymptoticsonthecontinuouspart(andtheasymp-toticallynegligiblejumps)ofMnisformedbysummingovereversmallerintervalsintime,uncorrelatedincrementsofMn.LipsterandShiryaevavoidthedetailsofhowonemightaccumulateinformationonthepersistentjumpsbyrequiringthattheconditionaldistribution(giventhepast)ofthejumpsizesapproachanormaldistributionsu cientlyfast(conditionR inLiptserandShiryaev,1983).3Inapplications,itisnecessarytogivesomethoughttohowone