§1-2 结合键

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

§1-2结合键InteratomicBonding结合键:原子结合成分子或固体的方式和结合力的大小。结合键决定了物质的一系列物理、化学、力学等性质。从原则上讲,只要能从理论上正确地分析和计算结合键,就能预测物质的各项性质。结合键的大小从本质上讲都起源于原子核和电子间的静电交互作用力即库仑力。不同的键对应着不同的电子分布方式,但都满足一个共同的条件,即键合后各原子的外层电子结构要成为稳定的结构,也就是隋性气体原子的外层“八电子层”结构(即ns2np6结构)。结合键Bonding物理键PhysicalBonding化学键ChemicalBonding离子键IonicBonding共价键CovalentBonding金属键MetallicBonding范德华键VanderWaalsBonding氢键HydrogenBonding主价键PrimaryBonding次价键SecondaryBonding正负离子通过静电引力(库仑引力ColumbicForces)而结合成离子化合物(或离子晶体IonicCrystal),因此,离子键又称极性键。离子化合物必须是电中性的,即正电荷数应等于负电荷数。离子化合物AxBy对晶体结构的唯一限制是A和B的近邻数必须与化合比x∶y成反比。这一限制也同时限制了离子晶体的配位数(CoordinativeNumber/CN)最高为8。一、离子键(IonicBonding)多数盐类、碱类和金属氧化物实质:金属原子失去电子成为带正电的正离子,非金属原子得到电子成为带负电的负离子,两个异号离子间的静电吸引作用。离子键的形成离子间作用力与离子间距离的关系特点:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性。结合力较大性质:熔点和硬度均较高,热膨胀系统小,但脆性大。良好电绝缘体。二、共价键(CovalentBonding)亚金属(C、Si、Sn、Ge)、聚合物和无机非金属材料。实质:由二个或多个电负性差不大的原子间通过共用电子对形成。金刚石的结构共价键特点:饱和性、方向性、配位数较小在形成共价键时,为使电子云达到最大限度的重叠,共价键就有方向性,键的分布严格服从键的方向性。当一个电子和另一个电子配对以后就不再和第三个电子配对了,成键的公用电子对数目是一定的,这就是共价键的饱和性。共价晶体性能:强度高,硬度高,脆性大,熔点高,沸点高和挥发性低,良好的光学特性,差的导电性。金属键:金属中自由电子与金属正离子之间构成的键。实质:金属最外层电子数很少(通常s、p价电子数少于4),即价电子(valenceelectron)极易挣脱原子核之束缚而成为自由电子(Freeelectron),形成电子云(electroncloud)。特点:电子共有化,既无饱和性又无方向性,容易形成低能量密堆结构。三、金属键(MetallicBonding)良好的导电性和导热性。正的电阻温度系数。不透明并呈现特有的金属光泽。良好的塑性变形能力,好的强韧性。金属键材料特点:JohannesDiderikVanderWaals1837–1923TheNobelPrizeinPhysics1910“forhisworkontheequationofstateforgasesandliquids”四.范德华键(VanderWaalsBonding)范德华键:材料中分子间存在的一种弱的作用力。共价键分子极性分子:共价电子对偏于某一成键电子非极性分子:共价电子对位于成价电子中间极性分子=偶极子(Dipoles)永久偶极子诱导偶极子静电力(electrostaticforce):诱导力(inductionforce):色散力(dispersiveforce):实质:+-+-偶极子偶极子电偶极矩感应作用偶极子诱导偶极子诱导偶极子诱导偶极子氩原子间的范德华键形成示意图聚氯乙烯分子间的范德华键范德华键范德华键甲烷结构示意图特点:范德华键是一种次价键,没有方向性和饱和性,它比化学键的键能小1-2个数量级,远不如化学键牢固,但能很大程度改变材料性质。由分子键结合的固体材料熔点低、硬度也很低。因无自由电子,因此材料有良好的绝缘性。在高分子材料中总的范德华键超过化学键的作用,故在去除所有的范德华键作用前化学键早已断裂了,所以高分子往往没有气态,只有固态和液态。在HF、H2O、NH3等物质中,原子都是通过极性共价键结合的,氢原子中唯一的电子被其它原子所共有,裸露原子核将与近邻分子的负端相互吸引形成氢桥。使分子之间通过氢键连接。下面以水为例加以说明。五、氢键(HydrogenBonding)氢和氧原子间形成共价键,由于氢-氧原子间的共用电子对靠近氧原子而远离氢原子,使氢原子剩下一个没有任何核外电子作屏蔽的原子核(质子),于是这个没有屏蔽的氢原子核就会对相邻水分子中的氧原子外层未共价电子有较强的静电引力,这个引力就是氢键。固体分子状态水分子之间的氢键六、各种结合键的特点比较离子键、共价键和金属键都涉及到原子外层电子的重新分布,这些电子在键合后不再仅仅属于原来的原子,因此,这几种键都称为化学键。在形成分子键和氢键时,原子的外层电子分布没有变化,或变化极小,它们仍属于原来的原子。因此,分子键和氢键就称为物理键。一般说来,化学键最强,氢键和分子键较弱。类型作用力来源键合强弱形成晶体的特点离子键原子得、失电子后形成负、正离子,正负离子间的库仑引力强无方向性键、高配位数、高熔点、高强度、低膨胀系数、塑性较差、固态不导电、熔态离子导电共价键相邻原子价电子各处于相反的自旋状态,原子核间的库仑引力强有方向性键、低配位数、高熔点、高强度、高硬度、低膨胀系数、塑性较差、即使在熔态也不导电金属键自由电子气与正离子实之间的库仑引力较强无方向性键、结构密堆、配位数高、塑性较好、有光泽、良好的导热导电性分子键原子间瞬时电偶极矩的感应作用较弱无方向性键、结构密堆、高熔点、绝缘氢键氢原子核与极性分子间的库仑引力弱有方向性和饱和性价键四面体金属键分子键和共价键离子键、共价键多种结合键Thanks

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功