遥感数字影像处理遥感数字影像分类第五讲遥感数字影像分类1概述2分类原理与基本过程3遥感影像分类方法4分类后处理5影像解译专家系统1概述遥感影像计算机分类以遥感数字影像为研究对象,在计算机系统支持下,综合运用地学分析、遥感影像处理、地理信息系统、模式识别与人工智能技术,实现地学专题信息的智能化获取。其基本目标是将人工目视解译遥感影像发展为计算机支持下的遥感影像理解。1.1计算机遥感影像分类的概念计算机遥感影像分类是统计模式识别技术在遥感领域中的具体应用。统计模式识别的关键是提取待识别模式的一组统计特征值,然后按照一定准则作出决策,从而对数字影像予以识别。遥感影像分类的主要依据是地物的光谱特征和空间特征。遥感影像中的同类地物在相同的条件下(纹理、地形、光照以及植被覆盖等等),应具有相同或相似的光谱特征和空间特征,从而表现出同类地物的某种内在的相似性,即同类地物像元的特征向量将集群在同一特征空间区域。分类是对影像上每个像素按照亮度接近程度给出对应类别,以达到大致区分遥感影像中多种地物的目的。遥感影像分类是将影像的所有像元按其性质分为若干个类别的技术过程(朱述龙等,遥感图象获取与分析)。性质指地物光谱特征和空间特征。1.2遥感影像计算机分类遇到的困难(1)遥感影像是从遥远的高空成像的,成像过程要受传感器、大气条件、太阳位置等多种因素的影响。影像中所提供的目标地物信息不仅不完全,而且或多或少地带有噪声,因此人们需要从不完全的信息中尽可能精确地提取出地表场景中感兴趣的目标物。(2)遥感影像信息量丰富,与一般的影像相比,其包容的内容远比普通的影像多,因而内容非常“拥挤”。不同地物间信息的相互影响与干扰使得要提取出感兴趣的目标变得非常困难。(3)遥感影像的地域性、季节性和不同成像方式更增加了计算机对遥感数字影像进行解译的难度。1.3遥感影像计算机分类发展前景由于利用遥感影像可以客观、真实和快速地获取地球表层信息,这些现势性很强的遥感数据在自然资源调查与评价、环境监测、自然灾害评估与军事侦察上具有广泛应用前景。因此,利用计算机进行遥感影像智能化解译,快速获取地表不同专题信息,并利用这些专题信息迅速地更新地理数据库,这是实现遥感影像自动理解的基础研究之一,也是地理信息系统中数据采集自动化研究的一个方向,因此具有重要的理论意义和应用前景。2.1计算机遥感影像分类的原理分类过程中采用的统计特征变量包括:全局统计特征变量和局部统计特征变量。全局统计特征变量是将整个数字影像作为研究对象,从整个影像中获取或进行变换处理后获取变量,前者如地物的光谱特征,后者如对TM的6个波段数据进行K-T变换(缨帽变换)获得的亮度特征,利用这两个变量就可以对遥感影像进行植被分类。局部统计特征变量是将数字影像分割成不同识别单元,在各个单元内分别抽取的统计特征变量。例如,纹理是在某一影像的部分区域中,以近乎周期性或周期性的种类、方式重复其自身局部基本模式的单元,因此可以利用矩阵作为特征对纹理进行识别。2分类原理与过程取n*n的窗口,有关矩阵为:–关联矩阵以偏离影像灰度为i的点一定位置(方向和距离)的点的灰度为j的概率Pδ(i,j),求出关联矩阵,从该矩阵中算出各种纹理的特征量(能量、熵、相关性等)–旋转矩阵以方向上灰度为i的点连续出现k个的频率P(i,k)为元素,求出旋转矩阵。从矩阵中算出各种纹理的特征量。在很多情况下,利用少量特征就可以进行遥感影像的地学专题分类,因此需要从遥感影像n个特征中选取k个特征作为分类依据,我们把从n个特征中选取k个更有效特征的过程称为特征提取。特征提取要求所选择的特征相对于其他特征更便于有效地分类,使影像分类不必在高维特征空间里进行,其变量的选择需要根据经验和反复的实验来确定。统计特征变量可以构成特征空间,多波段遥感影像特征变量可以构成高维特征空间。一般说来,高维特征空间数据量大,但这些信息中仅包含少量的样本分类信息。为了抽取这些最有效的信息,可以通过变换把高维特征空间所表达的信息内容集中在一到几个变量影像上。主成分变换可以把互相存在相关性的原始多波段遥感影像转换为相互独立的多波段新影像,而且使原始遥感影像的绝大部分信息集中在变换后的前几个组分构成的影像上,实现特征空间降维和压缩的目的。遥感影像计算机分类的依据是遥感影像像素的相似度。相似度是两类模式之间的相似程度。在遥感影像分类过程中,常使用距离和相关系数来衡量相似度。距离:特征空间中象元数据和分类类别特征的相似程度。距离最小即相似程度最大。度量特征空间中的距离经常采用以下几种算法:•绝对值距离•欧氏距离nkjkikijxxd1)()(2kTkkxxdx为像元数据矢量类别k的平均值矢量•马氏距离(Mahalanobis,既考虑离散度,也考虑各轴间的总体分布相关)•混合距离(像元i到第g类类均值的距离)pkkgkiigMxd1)()(12jiijTjiijxxxxdglklgkgxmM1为g类k变量的均值g类的像元数•相关系数是指像素间的关联程度。采用相关系数衡量相似度时,相关程度越大,相似度越大。两个像素之间的相关系数rij可以定义为:nkjkjnkikinkjkjikiijxxxxxxxxr12121)()())((像元i的第k个分量均值(1)首先明确遥感影像分类的目的及其需要解决的问题,在此基础上根据应用目的选取特定区域的遥感数字影像,影像选取时应考虑影像的空间分辨率、光谱分辨率、成像时间、影像质量等。(2)根据研究区域,收集与分析地面参考信息与有关数据。为提高计算机分类的精度,需要对数字影像进行辐射校正和几何纠正(这部分工作也可能由提供数字影像的卫星地面站完成)。(3)对影像分类方法进行比较研究,掌握各种分类方法的优缺点,然后根据分类要求和影像数据的特征,选择合适的影像分类方法和算法。根据应用目的及影像数据的特征制定分类系统,确定分类类别,也可通过监督分类方法,从训练数据中提取影像数据特征,在分类过程中确定分类类别。2.2计算机遥感影像分类过程(4)找出代表这些类别的统计特征。(5)为了测定总体特征,在监督分类中可选择具有代表性的训练场地进行采样,测定其特征。在无监督分类中,可用聚类等方法对特征相似的像素进行归类,测定其特征。(6)对遥感影像中各像素进行分类。包括对每个像素进行分类和对预先分割均匀的区域进行分类。(7)分类精度检查。在监督分类中把已知的训练数据及分类类别与分类结果进行比较,确认分类的精度及可靠性。在非监督分类中,采用随机抽样方法,分类效果的好坏需经实际检验或利用分类区域的调查材料、专题图进行核查。(8)对判别分析的结果统计检验。利用遥感影像进行分类(classification)是以区别影像中所含的多个目标物为目的的,对每个像元或比较匀质的像元组给出对应其特征的名称。在分类中注重的是各像元的灰度及纹理等特征。根据分类过程中人工参与程度分为监督和非监督分类分类方法包括监督分类、非监督分类、混合分类。监督和非监督是最常用的两种常规分类方法。•监督分类方法(又称训练分类法)。首先需要从研究区域选取有代表性的训练区作为样本。根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、方差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。简单说,用被确定类别的样本像元去识别其他未知类别像元的过程。•非监督分类方法。是在没有先验类别(训练区)作为样本的条件下,即事先不知道类别特征,主要根据像元间相似度的大小进行归类合并(将相似度大的像元归为一类)的方法。3分类方法监督分类:最小距离分类法、多级切割分类法、特征曲线窗口法、最大似然比分类法非监督分类:多级集群法、动态聚类法等3.1监督分类算法3.1.1最小距离分类法最小距离分类法(minimumdistanceclassifier)是用特征空间中的距离表示像元数据和分类类别特征的相似程度,在距离最小时(相似度最大)的类别上对像元数据进行分类的方法。包括:•最小距离判别法•最近邻域分类法•最小距离判别法这种方法要求对遥感影像中每一个类别选一个具有代表意义的统计特征量(均值),首先计算待分像元与已知类别之间的距离,然后将其归属于距离最小的一类。•最近邻域分类法这种方法是上述方法在多波段遥感影像分类中的推广。在多波段遥感影像分类中,每一类别具有多个统计特征量。最近邻域分类法首先计算待分像元到每一类中每一个统计特征量间的距离,这样,该像元到每一类都有几个距离值,取其中最小的一个距离作为该像元到该类别的距离,最后比较该待分像元到所有类别间的距离,将其归属于距离最小的一类。•最小距离分类法原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。3.1.2多级切割法•多级切割法(multi-levelsliceclassifier)是根据设定在各轴上的值域分割多维特征空间的分类方法。这种方法要求通过选取训练区,详细了解分类类别(总体)的特征,并以较高的精度设定每个分类类别的光谱特征上限值和下限值,以便构成特征子空间。对于一个未知类别的像素来说,它的分类取决于它落入哪个类别特征子空间中。如落入某个特征子空间中,则属于该类,如落入所有特征子空间之外,则属于未知类型,因此多级切割分类法要求训练区样本的选择必须覆盖所有的类型,在分类过程中,需要利用待分类像素光谱特征值与各个类别特征子空间在每一维上的值域进行内外判断,检查其落入哪个类别特征子空间中,直到完成各像素的分类。用多级切割法分割三维特征空间多级分割法分类便于直观理解如何分割特征空间,以及待分类像素如何与分类类别相对应。但它要求分割面总是与各特征轴正交,如果各类别在特征空间中呈现倾斜分布,就会产生分类误差。因此运用多级分割法分类前,需要先进行主成分分析,或采用其他方法对各轴进行相互独立的正交变换,然后进行多级分割。3.1.3特征曲线窗口法特征曲线是地物光谱特征参数构成的曲线。由于地物光谱特征受到大气散射、天气状况等影响,即使同类地物,它们所呈现的特征曲线也不完全相同,而是在标准特征曲线附近摆动变化。因此以特征曲线为中心取一个条带,构造一个窗口,凡是落在此窗口范围内的地物即被认为是一类,反之,则不属于该类,这就是特征曲线法。•特征曲线窗口法分类的依据是:相同的地物在相同的地域环境及成像条件下,其特征曲线是相同或相近的,而不同地物的特征曲线差别明显。•特征曲线选取的方法可以有多种,如地物吸收特征曲线,它将地物的标准吸收特征值连接成曲线,通过与其他像素吸收曲线比较,进行分类;也可以在影像训练区中选取样本,把样本地物的亮度值作为特征参数,连接该地物在每波段参数值即构成该类地物的特征曲线。•特征曲线窗口法可以根据不同特征进行分类,如利用标准地物光谱曲线的位置、反射峰或谷的宽度和峰值的高度作为分类的识别点,给定误差容许范围,分别对每个像素进行分类;或者利用每一类地物的各个特征参数上、下限值构造一个窗口,判别某个待分像元是否落入该窗口,只要检查该像元各特征参数值是否落入到相应窗口之内。•特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。各特征参数窗口大小的选择可以不同,它要根据地物在各特征参数空间里的分布情况而定。3.1.4最大似然比分类法•最大似然比分类法(maximumlikelihoodclassifier)求出像元数据对于各类别的似然度(likelihood),把该像元分到似然度最大的类别中去的方法。似然度是指,当观测到像元数据x时,它是从分类类别k中得到的(后验)概率。它假定训练区地物的光谱特征和自然界大部分随机现象一样,近似服从正态分布,利用训练区可求出均值、方差以及协方差等特征参数,从而可求出总体的先验概率密度函数。当总体分布不符合正态分布时,其分类可靠性将下降,这种情况下不宜采用最大似然比分类法。•最大似然比分类法在多类别分类时,常采用统计学方法建立起一个判别函数集,然后根据这个判别函数集计算各待分像元的归属概率。x为待分像元,P(k)为类别k的先验概率,