第十一章磁场第一部分三年高考题荟萃2010年高考新题1.2010·重庆·21如题21图所式,矩形MNPQ区域内有方向垂直于纸面的匀强磁场,有5个带点粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,,这些粒子的质量,电荷量以及速度大小如下表所示。由以上信息可知,从图中abc处进入的粒子对应表中的编号分别为A.3,5,4B.4,2,5C.5,3,2D.2,4,5【答案】D【解析】根据半径公式Bqmvr结合表格中数据可求得1—5各组粒子的半径之比依次为0.5︰2︰3︰3︰2,说明第一组正粒子的半径最小,该粒子从MQ边界进入磁场逆时针运动。由图a、b粒子进入磁场也是逆时针运动,则都为正电荷,而且a、b粒子的半径比为2︰3,则a一定是第2组粒子,b是第4组粒子。c顺时针运动,都为负电荷,半径与a相等是第5组粒子。正确答案D2.2010·全国卷Ⅰ·17某地的地磁场磁感应强度的竖直分量方向向下,大小为54.510T。一灵敏电压表连接在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为2m/s。下列说法正确的是A.河北岸的电势较高B.河南岸的电势较高C.电压表记录的电压为9mVD.电压表记录的电压为5mV【答案】BD【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。根据右手定则,右岸即北岸是正极电势高,南岸电势低,D对C错。根据法拉第电磁感应定律351092100105.4BLvEV,B对A错【命题意图与考点定位】导体棒切割磁场的实际应用题。3.2010·江苏物理·9如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO’与SS’垂直。a、b、c三个质子先后从S点沿垂直于磁场的方向摄入磁场,它们的速度大小相等,b的速度方向与SS’垂直,a、c的速度方向与b的速度方向间的夹角分别为、,且。三个质子经过附加磁场区域后能达到同一点S’,则下列说法中正确的有A.三个质子从S运动到S’的时间相等B.三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO’轴上C.若撤去附加磁场,a到达SS’连线上的位置距S点最近D.附加磁场方向与原磁场方向相同答案:CD4.2010·上海物理·13如图,长为2l的直导线拆成边长相等,夹角为60o的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为(A)0(B)0.5BIl(C)BIl(D)2BIl答案:C解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为BIl。选C。本题考查安培力大小的计算。难度:易。5.2010·安徽·20如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料,不同粗细的导线绕制(Ⅰ为细导线)。两线圈在距磁场上界面h高处由静止开始自由下落,再进入磁场,最后落到地面。运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界。设线圈Ⅰ、Ⅱ落地时的速度大小分别为v1、v2,在磁场中运动时产生的热量分别为Q1、Q2。不计空气阻力,则A.v1v2,Q1Q2B.v1=v2,Q1=Q2C.v1v2,Q1Q2D.v1=v2,Q1Q2【答案】D【解析】由于从同一高度下落,到达磁场边界时具有相同的速度v,切割磁感线产生感应电流同时受到磁场的安培力22BlvFR,又4lRS(ρ为材料的电阻率,l为线圈的边长),所以安培力24BlvSF,此时加速度Fagm,且04mSl(0为材料的密度),所以加速度2016Bvag是定值,线圈Ⅰ和Ⅱ同步运动,落地速度相等v1=v2。由能量守恒可得:21()2QmghHmv,(H是磁场区域的高度),Ⅰ为细导线m小,产生的热量小,所以Q1Q2。正确选项D。6.2010·全国卷Ⅰ·26如下图,在03xa区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内。已知沿y轴正方向发射的粒子在0tt时刻刚好从磁场边界上(3,)Paa点离开磁场。求:⑴粒子在磁场中做圆周运动的半径R及粒子的比荷q/m;⑵此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;⑶从粒子发射到全部粒子离开磁场所用的时间。【答案】⑴aR332032Btmq⑵速度与y轴的正方向的夹角范围是60°到120°⑶从粒子发射到全部离开所用时间为02t【解析】⑴粒子沿y轴的正方向进入磁场,从P点经过做OP的垂直平分线与x轴的交点为圆心,根据直角三角形有222)3(RaaR解得aR33223sinRa,则粒子做圆周运动的的圆心角为120°,周期为03tT粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得RTmBqv2)2(,TRv2,化简得032Btmq⑵仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出。角度最小时从磁场右边界穿出圆心角120°,所经过圆弧的弦与⑴中相等穿出点如图,根据弦与半径、x轴的夹角都是30°,所以此时速度与y轴的正方向的夹角是60°。角度最大时从磁场左边界穿出,半径与y轴的的夹角是60°,则此时速度与y轴的正方向的夹角是120°。所以速度与y轴的正方向的夹角范围是60°到120°⑶在磁场中运动时间最长的粒子的轨迹应该与磁场的右边界相切,在三角形中两个相等的腰为aR332,而它的高是aaah333323,半径与y轴的的夹角是30°,这种粒子的圆心角是240°。所用时间为02t。所以从粒子发射到全部离开所用时间为02t。7.2010·海南物理·15右图中左边有一对平行金属板,两板相距为d.电压为V;两板之间有匀强磁场,磁感应强度大小为0B,方向与金属板面平行并垂直于纸面朝里。图中右边有一半径为R、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。一电荷量为q的正离子沿平行于全属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区城边界上的G点射出.已知弧PG所对应的圆心角为,不计重力.求(1)离子速度的大小;(2)离子的质量.【答案】(1)0VBd(2)0cot2qBBRdV【解析】(1)由题设知,离子在平行金属板之间做匀速直线运动,安所受到的向上的压力和向下的电场力平衡00qBqEv①式中,v是离子运动速度的大小,0E是平行金属板之间的匀强电场的强度,有0VEd②由①②式得0VBdv③(2)在圆形磁场区域,离子做匀速圆周运动,由洛伦兹力公式和牛顿第二定律有RRR2qBmrvv④式中,m和r分别是离子的质量和它做圆周运动的半径。由题设,离子从磁场边界上的点G穿出,离子运动的圆周的圆心O必在过E点垂直于EF的直线上,且在EG的垂直一平分线上(见右图)。由几何关系有tanrR⑤式中,是OO与直径EF的夹角,由几何关系得2⑥联立③④⑤⑥式得,离子的质量为0cot2qBBRdmV⑦8.2010·安徽·23如图1所示,宽度为d的竖直狭长区域内(边界为L1、L2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E0,E0表示电场方向竖直向上。t=0时,一带正电、质量为m的微粒从左边界上的N1点以水平速度v射入该区域,沿直线运动到Q点后,做一次完整的圆周运动,再沿直线运动到右边界上的N2点。Q为线段N1N2的中点,重力加速度为g。上述d、E0、m、v、g为已知量。(1)求微粒所带电荷量q和磁感应强度B的大小;(2)求电场变化的周期T;(3)改变宽度d,使微粒仍能按上述运动过程通过相应宽度的区域,求T的最小值。O电场变化的周期122dvTttvg⑨(3)若微粒能完成题述的运动过程,要求2dR⑩联立③④⑥得:22vRg○11设N1Q段直线运动的最短时间t1min,由⑤⑩○11得1min2vtg因t2不变,T的最小值min1min2(21)2vTttg9.2010·全国卷Ⅱ·26图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁场应强度大小为,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为34a,求离子乙的质量。若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。【答案】⑴aR332032Btmq⑵速度与y轴的正方向的夹角范围是60°到120°⑷粒子发射到全部离开所用时间为02t10.2010·福建·20如图所示的装置,左半部为速度选择器,右半部为匀强的偏转电场。一束同位素离子流从狭缝1S射入速度选择器,能够沿直线通过速度选择器并从狭缝2S射出的离子,又沿着与电场垂直的方向,立即进入场强大小为E的偏转电场,最后打在照相底片D上。已知同位素离子的电荷量为q(q>0),速度选择器内部存在着相互垂直的场强大小为0E的匀强电场和磁感应强度大小为0B的匀强磁场,照相底片D与狭缝1S、2S连线平行且距离为L,忽略重力的影响。(1)求从狭缝2S射出的离子速度0V的大小;(2)若打在照相底片上的离子在偏转电场中沿速度0方向飞行的距离为x,求出x与离子质量m之间的关系式(用0E、0B、E、q、m、L表示)。答案:11.2010·新课标·25如图所示,在0≤x≤a、o≤y≤2a范围内有垂直于xy平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在某时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在xy平面内,与y轴正方向的夹角分布在0~090范围内.己知粒子在磁场中做圆周运动的半径介于2a到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的(1)速度大小;(2)速度方向与y轴正方向夹角正弦。12.2010·北京·23利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。如图1,将一金属或半导体薄片垂直至于磁场B中,在薄片的两个侧面a、b间通以电流I时,另外两侧c、f间产生电势差,这一现象称霍尔效应。其原因是薄片中的移动电荷受洛伦兹力的作用相一侧偏转和积累,于是c、f间建立起电场EH,同时产生霍尔电势差UH。当电荷所受的电场力与洛伦兹力处处相等时,EH和UH达到稳定值,UH的大小与I和B以及霍尔元件厚度d之间满足关系式HHIBURd,其中比例系数RH称为霍尔系数,仅与材料性质有关。(1)设半导体薄片的宽度(c、f间距)为l,请写出UH和EH的关系式;若半导体材料是电子导电的,请判断图1中c、f哪端的电势高;(2)已知半导体薄片内单位体积中导电的电子数为n,电子的电荷量为e,请导出霍尔系数RH的表达式。(通过横截面积S的电流InevS,其中v是导电电子定向移动的平均速率);(3)图2是霍尔测速仪的示意图,将非磁性圆盘固定在转轴上,圆盘的周边等距离地嵌装着m个永磁体,相邻永磁体的极性相反。霍尔元件置于被测圆盘的