§11.2.5三角形全等的判定回顾与思考1、判定两个三角形全等方法,,,,。SSSASAAASSAS3、如图,ABBE于B,DEBE于E,⊥⊥2、如图,RtABC中,直角边、,斜边。ABCBCACAB(1)若A=D,AB=DE,则ABC与DEF(填“全等”或“不全等”)根据(用简写法)△△ABCDEF全等ASAABCDEF(2)若A=D,BC=EF,则ABC与DEF(填“全等”或“不全等”)根据(用简写法)△△AAS全等(3)若AB=DE,BC=EF,则ABC与DEF(填“全等”或“不全等”)根据(用简写法)△△全等SAS(4)若AB=DE,BC=EF,AC=DF则ABC与DEF(填“全等”或“不全等”)根据(用简写法)△△全等SSSABCA1B1C1如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.你能帮他想个办法吗?创设情景引入课题ABCA1B1C1方法1:用直尺量出斜边AB,A1B1的长度,再用量角器量出其中一个锐角(如∠A与∠A1)的大小,若它们对应相等,据根()可以证明两直角三角形是全等的。方法2:用直尺量出不被遮住的直角边AC,A1C1的长度,再用量角器量出其中一个锐角(如∠A与∠A1)的大小,若它们对应相等,据根()可以证明两直角三角形是全等的。AASASAABCA1B1C1如果他只带了一个卷尺,能完成这个任务?那么他只能测直角边和斜边了,只满足斜边和一条直角边对应相等的两个直角三角形能全等吗?画一画:任意画一个Rt△ACB,使∠C﹦90°,再画一个Rt△A′C′B′使∠C﹦∠C′,B′C′﹦BC,A′B′﹦AB(1):你能试着画出来吗?与小组交流一下。作法:1、画∠MC′N=90°2、在射线C′M上取B′C′=BC3、以B′为圆心,AB为半径画弧,交射线C′N于点A′4、连接A′B′,△A′C′B′就是所作三角形。(2):把画好的Rt△A′C′B′放到Rt△ACB上,它们全等吗?你能发现什么规律?动手实践探索规律直角三角形全等的条件斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.想一想你能够用几种方法说明两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS、ASA、AAS、SSS,还有直角三角形特殊的判定方法——“HL”.如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?CDAB解:在Rt△ACB和Rt△ADB中AB=AB,AC=AD.∴Rt△ACB≌Rt△ADB(HL).∴BC=BD(全等三角形对应边相等).如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。例4:如图,AC⊥BC,BD⊥AD,AC﹦BD,求证:BC﹦ADABCD证明:∵AC⊥BC,BD⊥AD∴∠C与∠D都是直角.AB=BA,AC=BD.Rt△ABC≌Rt△BAD(HL).∴BC﹦AD在Rt△ABC和Rt△BAD中,AFCEDB如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF求证:BF=DE巩固练习AFCEDB如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF求证:BD平分EFG变式训练1如图,AB=CD,BF⊥AC,DE⊥AC,AE=CF想想:BD平分EF吗?CDAFEBG变式训练2议一议如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?∠ABC+∠DFE=90°联系实际综合应用解:在Rt△ABC和Rt△DEF中BC=EF,AC=DF.∴Rt△ABC≌Rt△DEF(HL).∴∠ABC=∠DEF(全等三角形对应角相等).∵∠DEF+∠DFE=90°,∴∠ABC+∠DFE=90°1.直角三角形是特殊的三角形,所以不仅有一般三角形的判定全等的方法,而且还有直角三角形特殊的判定方法----“HL”2.两个直角三角形中,由于有直角相等的隐含条件,所以只须找两个条件即可(两个条件中至少有一个条件是一对对应边相等)书面作业:必做题:《名师点津》P169-20选做题:《名师点津》P1821-23课后体会:学完判定全等三角形的条件后,你有什么收获?