脑磁图(MEG)概述脑磁图是无创伤也也探测大脑电磁生理信号的一种脑功能检测技术,在进行脑成固检查时探测器不需要固定于患者头部,检测设备对人体无任何副作用。一、基本原理人的颅脑周围也存在着磁场,这种磁场称为脑磁场。但这种磁场强度很微弱,要用特殊的设备才能测知并记录下来.需建立一个严密的电磁场屏蔽室,在这个屏蔽室中,将受检者的头部置于特别敏感的超冷电磁测定器中,通过特殊的仪器可测出颅脑的极微弱的脑磁波,再用记录装置把这种脑磁波记录下来,形成图形,这种图形便称作脑磁图。它是反映脑的磁场变化,此与脑电图反映脑的电场变化不同。脑磁图对脑部损伤的定位诊断比脑电图更为准确,加之脑磁图不受颅骨的影响,图像清晰易辨,故对脑部疾病是一种崭新的手段,为诊断发挥其特有的作用,要与脑电图结合起来,互补不足。脑电图易受过多电活动的干扰,也受颅骨影响,波幅衰减等,其诊断更准确。生理学原理:大脑皮层基本情况如下,谨以图作为说明,不再进行额外解释。补充概念:突触后电位(此部分较为主要,为脑磁图的主要探测部分):突触由突触前膜、突触间隙及突触后膜三部分构成。突触前膜内有很多小的囊泡,其内有特异性递质,神经冲动到达突触前膜后,囊泡内的递质释放入突出间隙,并作用于突触后膜的特殊受体,突触后膜某些离子通道开放,膜电位发生变化,产生突出后电位。突触后电位分为兴奋性突触后电位和抑制性突触后电位,兴奋性突触后电位使膜出现去极化,抑制性突触后电位使膜出现超极化。脑电活动主要有三个来源:1、跨膜电流。2、细胞内电流。3、细胞外容积电流。每一个电流成分均有其相关的磁场,脑磁图所测量的磁场反映了所有电流成分的磁场的叠加。跨膜电流不产生可探测的磁信号,原因是细胞膜内外的电流大小相等,方向相反,所产生的磁场相互抵消。细胞外容积电流在球形导体所产生的磁场在球形导体外为零,头颅的内表面近似一个球形导体。根据物理学公式推导出在一个容积到体内放射状方向的电流源在容积导体外产生的磁场为零。因此脑磁图对放射状方向的树突活动为一个盲区。轴突的电活动也产生磁场,然而运动电位时空范围有限,所有轴突同步产生电流是不现实的。因此,只有细胞内电流的正切成分才能产生可探测的磁场。突触后电位即为细胞内电流,将突触后电位看做一个电流偶极子,脑磁场测量实际上是测量的突触后电位中与脑表面呈正切方向的电流所产生的磁场,当然很少的树突表现为纯粹的放射状或单纯的正切状。但任意一个电流矢量均可分解为放射状成分及正切成分。脑磁图选择性测量正切成分。由于大脑皮层的椎体细胞尖树突平行排列,当有同步电活动时可以形成等电流偶极,从而在头皮外产生可测量的信号二、检测设备组成框图三、框图中各部分的功能及作用第一部分:检测部分由单个的神经元活动时产生的磁场很微弱,在单位面积脑皮质中数干个锥体细胞几乎同时产生神经冲动,从而产生集合电流,产生与电流方向正切的脑磁场,当10^5个细胞同步活动时产生的电流强度约为10nAm,磁场强废约为100fT,(1fT=10^(-15)T).脑磁图主要的探测设备为超导量子干涉仪(SQUID).从物理学角度讲,SQUID的原理及测量涉及许多高等数学及电子学公式,比较复杂,在这里只简单介绍其原理:超导量子干涉仪是唯一具有测量生物磁场敏感度的探测器。它能将微弱的磁信号转化为电信号。SQUID磁力计的基本结构如图所示,外部磁场信号(如脑磁场)并不是由SQUID直接测量.而是经过与磁通转换器耦合实现的。转换器包括两个线圈:采集线圈——采集外界磁通的受化量;信号线周——与SQUID耦合。SQUID是个用超导材料制成的环,中间被两个或一个“弱连接”整体检测装置如图:第二部分:整体结构一、磁屏蔽系统磁屏蔽系统的作用是确保人脑磁信号不被外界磁场干扰。屏蔽的方法有多种,如铁磁屏蔽法,涡流屏蔽法和近年来发明的高温超导屏蔽法,用的最普遍的屏蔽方法为铁磁屏蔽法和涡流法,其原理是磁屏蔽室。二、磁场探测装置探测装置主要由SQUID组成。具体见第一部分。三、头位置指示器头位置指示器通过头位置指示器将头部进行数字化处理,通过将头数字化后建立一个个坐标系统,主要是以双侧耳前点,鼻根处建立坐标系.通过固定在头表而的四个或三个线圈确定头的位置。扫描前需将双侧耳前点及鼻根用维止素A或E胶囊固定,以便在MEG与MRI叠加时使用同一坐标系统。四、刺激系统为了获得脑诱发磁场,需要对某些部位进行刺激、以兴奋脑的某些重要功能区.如电极刺激双侧腕部正中神经使闹提感皮质兴奋,需要电刺激器或气动的触觉刺激器;运动食指从而获得支配食指运动的皮质兴奋需要光电耦合装置.给予听觉刺激获得听觉皮质区的位置要声音产生及输送装置等等.这些系统要与数据采集计算机及刺激计算机相连。五、信息结合处理系统由数据采集计算机获得的MEG资料通过分析工作站对资料进行分析.需要将MRI所获得的脑解剖结构资料通过汁算机网络传送到MEG分析工作站.将MRI资料与MEG资料接加形成磁源性影像(MSI)。同时在MEG资料记录的同时可同时记录EEG资料.以便与MEG资料比较。六、灌液氦装置为了保持SQUID的超导状态,目前所使用的脑磁图设备需要每周灌l一2次液氦,最好常备一个大的无磁性的杜瓦桶,以及输送液氦的虹吸管(图14—12)当液氢水平降到0时要及时补充液氦。由于液氢由液态变为气态时体积膨胀740倍.而且液氦为超低温液体,因此在输送及补充液氦时要注意安全,注意低温伤及窒息。四、临床应用脑磁电信号的源分析是MSI功能成像技术的一个重要组成部分。源分所,指的是根据MEG低温超导操测器测得的颅外磁场的时间和空间分布,通过选用适当的物理模型和数学方法进行计算分析.进而确定颅内神经信号源的位置。强度及方向的过程。对神经信号源准确可靠地空间定位.使医生们能确立人脑的重要功能区(加体感,运动,听觉.视觉,语言,记忆等)和大脑疾病(如癫痫)的致病灶等在MRI精细结构图像上的具体位置。从而为病情诊断.治疗策划和康复观察提供可靠的科学数据。第一章脑磁图在癫痫中的应用1、癫痫灶定位一、原发性癫痫的癫痫灶定位原发性癫痫又称特发性癫痫,是指通过详细询问病史及体格检查以及目前所能做到的各种检查还未能证明脑部有引起癫痫发作的器质性病变或存在全身性代谢性疾病迹象的一类癫痫。原发性癫痫在CT、MRI形态学上表现正常,MEG可发现发作间期及发作期棘波,与MRI叠加形成MSI,可明确癫痫灶的位置。二.继发性癫痫的癫痫灶定位继发性癫痫又称为症状性癫痫,约占癫痫病入总数的23%~39%,龚淑英等人对930例经CT检查的癫痫病人进行了分析。能查出病因的共362例。但其余问题均可由脑磁图分析得到。2、癫痫综合症本病的发病机制不是十分清楚,CT和MRI可正常,识别最初的癫痫样放电源对了解治疗本病是主要的,硬模下切除对治疗语言异常有价值。用头皮EEG对初始源的精确定位比较困难,而MEG可对癫痫源精确定位。第二章脑磁图在脑功能定位区中的应用1、体感诱发脑磁场通过气动、触动及电流脉冲刺激指、趾皮神经,经脑磁图设备记录刺激后的大脑皮质电磁反应,即为躯体感觉诱发磁场。与体感诱发电位不同的是.目前脑磁图只能记录皮层电反应引起的磁场变化,而体感诱发电位可以分段记录痛觉传导路中的电位反应,如颈髓电位,周围神经的动作电位,体感诱发磁反应是一种最常用的电磁诱发反应,它对脑体感皮质的定位非常精确,对指导临床医师术前制定手术方案、术巾指导子木有重要意义。2、运动与脑磁图1)脑磁图对运动进行定位。2)脑磁图对运动机制探讨3)脑磁图与肌张力异常。3、听觉诱发脑磁场听觉诱发脑磁场发展概况:自1963年美国的Cohen首次记录到人的脑磁图后.脑磁图的检测设备和应用范围得到了快速的发酸。1973年Rcitc首次报道了听觉诱发脑磁场。上世纪80年代中后期短、中潜伏期的听觉诱发脑干磁反映和长期潜伏的皮层听诱发磁反映应亦得到了描记。目前的研究已经显示出AEFs在客观听觉功能的检测。大脑皮层听功能区的定位,一些中枢神经系统疾病的定位诊断以及对感知的辨认,行为反应等闹的高级神经活动的诊断方面有着重要的应用价值4、视觉诱发脑磁图5、语言认知功能磁源成像五、发展历史,更新换代在19世纪初,丹麦物理学家Osrsted发现随着时间变化的电流周围产生磁场.磁场的方向遵循右手法则,即当右手拇指指向电流方向时其余四指所指的方向即为您场方向。此法则同样适用干生物电电流。人类首次记录生物磁场测定是在1963年.由美国的Baule和Mcfee两人用200万匝的诱导线圈测量心脏产生的磁信号。5年以后,美国麻省理工华院的Cohen首次在磁屏蔽室内进行了脑磁图记录。Cohen用诱导线圈和信号叠加技术及超导控术测量了脑的8-12Hz的α节律电流所产生的磁信号。随着电子技术的发展.1969年,Zimmermun与其同事发明了点接触式超导量于干涉仪,使探测磁场的灵敏度大大提高,首次记录包括心磁图.随后在磁屏蔽室内使用SQUID技术测量了脑磁图。最早期的脑磁图设备为单通道。也就是说有1个传感器.它覆盖的面积非常小,随后出现4通道、7通道、24通道、37通道及64通道等生物磁仪。为了得到全脑的生物磁信号,必须不断地转动传感器的位置,测量起来既费时间,又不能得到同步的脑电磁信号。随着科学技术的进术.目前已经由美国4D—Neuroimaging公司生产出了148通道、248通道及芬兰Ncuromag公司生产出306通道的全头型生物描仪,加拿大CTF公司生产的OMEGAl51.275通道全头型脑磁图设备,下图基本上代表了脑磁图的发展灾.即由通道数较少、探侧器覆苦面积较小的脑磁图设备发展为90年代初期的覆盖整个头部的多通道全头型脑磁图设备。全头型MEG设备只需经过一次测量即可采集到全脑的生物电磁信号.而且可与MRI所获得的解剖结构资料进行叠加.形成磁源性影像。将解剖及功能叠加到一起,准确地反映出脑功能实时变化,目前已经广泛应用干神经内外科疾病的诊断及实验研究。六、目前国内外研究现状等国内情况:截止至《脑磁图》文章发表时间(2004年)国内共安装了三台脑磁图设备、分别位于广州三九脑科医院.北京天坛医院及河北省人民医院。河北省人民医院装备芬兰Ncuromag公司生产的306同道全头型生物磁仪。七、部分参数脑磁图可十分准确地捕捉微弱的颅内电磁信号,其时间分辨率小于1ms,空间分辨率误差在0.5一lmm。它不仅能够捕捉到每一瞬间的脑细胞活动,而且还可将捕获的动态数据与三维MRI(磁共振)解剖图像叠加,形成四维的集电和磁信号一体化的脑功能影像图,实现病灶的动态精确定位,从时间、空间和分辨率三个方面最大限度地提高检测精度。它的毫秒级时间分辨率和毫米级的空间分辨率,使其在功能卜比EEG具有更加优越的功能定位特点,在癫痫灶定位上它比PET更加精确,定位精度可达1mm,其三维空间的立体动态影像上,时空分辨率比PET高10万倍,空间像度比PET高3倍左右,并且能分辨原发灶和继发灶,可以对癫痫灶进行精确定位,并且可以发现深部的癫痫源灶,并对癫痈性病灶的放电进程进行描记。八、脑电图、脑磁图、脑地形图对比。一、脑磁图的缺点检查及分析时间较长(约2h),不适用于急诊病例。脑磁图描记仪为高科技产品价格昂贵,检查费用较高,短时间内还不可能普及二、脑电图与闹电磁图的比较脑电图检测的是脑电信号,脑磁图检测的是脑磁信号,脑磁是由脑电产生的.二者反映的都是神经元细胞活动伴随的电荷变化,但心和磁是有差别的,正是此差别造成了MEG和EEG的差别:①脑磁图检测的是神经元细胞内电流产生的磁场;脑电图检测的是锥体细胞产生的兴奋性突触后电位。②脑磁图检测的是脑沟内锥体细胞的细胞内电流产生的磁场;脑电图检测的是脑回内锥体细胞电活动③脑磁信号在传导过程中介质的影响小,信号没有扭曲,所以空间分辨率高.通过与MRI影像融合,可对信号源精确定位;脑电信号则受介质的影响大,空间分辨率低,定位能力较差。④脑磁图的SQUID不必与头皮直接接触,固定在头盔形探头内,位置固走,排列紧密,提高空间分辨率;脑电图的电极必须逐个手工安放在患者头皮上,繁琐、费时,空间误差大,不能安放过多。⑤脑磁信号