菱形的判定---第1页共12页菱形的判定专项练习30题(有答案)1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点.(1)求证:四边形ABED是菱形;(2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长.2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD.求证:BC=2DN.3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)若AB=12cm,求菱形AEDF的周长.4.如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.菱形的判定---第2页共12页5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.(1)求证:AF=DC;(2)若∠BAC=90°,求证:四边形AFBD是菱形.6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形.7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE.(1)求证:四边形ADCE是菱形.(2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么?8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为EF,并且DE=DF.求证:四边形ABCD是菱形.9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作▱ADFE交BC于点G,H,且EH=EC.求证:(1)∠B=∠C;(2)▱ADFE是菱形.菱形的判定---第3页共12页10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交CD于F,EG⊥AB于G.(1)求证:△AEG≌△AEC;(2)△CEF是否为等腰三角形,请证明你的结论;(3)四边形GECF是否为菱形,请证明你的结论.11.如图,在△ABC中,AB=AC,点D、E、F分别是△ABC三边的中点.求证:四边形ADEF是菱形.12.如图,在四边形ABCD中,AB=CD,M、N、E、F分别为AD、BC、BD、AC的中点,求证:四边形MENF为菱形.13.已知:如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.求证:四边形ABED是菱形.14.如图,在△ABC中,AB=AC,M、O、N分别是AB、BC、CA的中点.求证:四边形AMON是菱形.菱形的判定---第4页共12页15.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.求证:四边形AEFG是菱形.16.如图,矩形ABCD绕其对角线交点旋转后得矩形AECF,AB交EC于点N,CD交AF于点M.求证:四边形ANCM是菱形.17.如图,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE交于M,BC、DF交于N,那么四边形BMDN是菱形吗?如果是,请写出证明过程;如果不是,说明理由.18.已知如图所示,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,四边形AEDF是菱形吗?说明理由.19.已知:如图所示,BD是△ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.菱形的判定---第5页共12页20.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.21.如图,在矩形ABCD中,EF垂直平分BD.(1)判断四边形BEDF的形状,并说明理由.(2)已知BD=20,EF=15,求矩形ABCD的周长.22.如图所示,在▱ABCD中,点E在BC上,AE平分∠BAF,过点E作EF∥AB.求证:四边形ABEF为菱形.23.已知,如图,矩形ABCD中,AB=4cm,AD=8cm,作∠CAE=∠ACE交BC于E,作∠ACF=∠CAF交AD于F.(1)求证:AECF是菱形;(2)求四边形AECF的面积.24.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.25.如图:在平行四边形ABCD中,E、F分别是边AB、CD的延长线上一点,且BE=DF,连接EF交AC于O.(1)AC与EF互相平分吗?为什么?(2)连接CE、AF,再添加一个什么条件,四边形AECF是菱形?为什么?菱形的判定---第6页共12页26.已知:如图,△ABC和△DBC的顶点在BC边的同侧,AB=DC,AC=BD交于E,∠BEC的平分线交BC于O,延长EO到F,使EO=OF.求证:四边形BFCE是菱形.27.如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由;(3)在(2)下要使BECF是菱形,则△ABC应满足何条件?并说明理由.28.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.29.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.30.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.菱形的判定---第7页共12页矩形的判定专项练习30题参考答案:1.1)证明:∵点E为BC的中点,∴BE=CE=BC,∵BA=AD=DC=BC,∴AB=BE=ED=AD,∴四边形ABED是菱形;(2)解:过点D作DH⊥BC,垂足为H,∵CD=DE=CE,∴∠DEC=60°,∴∠DBE=30°,在Rt△BDH中,BD=4cm,∴DH=2cm,∵AF=DH,∴AF=2cm.2.∵AO=ON,BM=MO,∴四边形AMND是平行四边形,∵AC⊥BD,∴平行四边形AMND是菱形,∴MN=DN,∵ON=NC,BM=MO,∴MN=BC,∴BC=2DN3.(1)∵D,E分别是BC,AB的中点,∴DE∥AC且DE=AF=AC.同理DF∥AB且DF=AE=AB.又∵AB=AC,∴DE=DF=AF=AE,∴四边形AEDF是菱形.(2)∵E是AB中点,∴AE=AB=6cm,因此菱形AEDF的周长为4×6=24cm.4.(1)∵BE=BP,∴∠E=∠BPE,∵BC∥AF,∴∠BPE=∠F,∴∠E=∠F.(2)∵EF∥BD,∴∠E=∠ABD,∠F=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是平行四边形,∴□ABCD是菱形.5.1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠1=∠2,在△AEF和△DEC中,∴△AFE≌△DCE(AAS),∴AF=DC;(2)证明:∵D是BC的中点,∴DB=CD=BC,∵AF=CD,∴AF=DB,∵AF∥BD,∴四边形AFBD是平行四边形,∵∠BAC=90°,D为BC中点,∴AD=CB=DB,∴四边形AFBD是菱形.6.∵对角线BD平分∠ABC,∴∠1=∠2,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠3=∠1,∴∠3=∠2,∴DC=BC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.7.(1)∵三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,∴△ABC≌△ABF,且∠BAC=∠BAF=30°,∴∠FAC=60°,∴AD=DC=AC,又∵△ABC≌△EFC,∴CA=CE,又∵∠ECF=60°,∴AC=EC=AE,∴AD=DC=CE=AE,∴四边形ADCE是菱形;菱形的判定---第8页共12页(2)证明:由(1)可知:△ACD,△AFC是等边三角形,△ACB≌△AFB,∴∠EDC=∠BAC=∠FAC=30°,且△ABC为直角三角形,∴BC=AC,∵EC=CB,∴EC=AC,∴E为AC中点,∴DE⊥AC,∴AE=EC,∵AG∥BC,∴∠EAG=∠ECB,∠AGE=∠EBC,∴△AEG≌△CEB,∴AG=BC,(7分)∴四边形ABCG是平行四边形,∵∠ABC=90°,∴四边形ABCG是矩形8.在△ADE和△CDF中,∵四边形ABCD是平行四边形,∴∠A=∠C,∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.又∵DE=DF,∴△ADE≌△CDF(AAS)∴DA=DC,∴平行四边形ABCD是菱形9.(1)∵在▱ADFE中,AD∥EF,∴∠EHC=∠B(两直线平行,同位角相等).∵EH=EC(已知),∴∠EHC=∠C(等边对等角),∴∠B=∠C(等量代换);(2)∵DE∥BC(已知),∴∠AED=∠C,∠ADE=∠B.∵∠B=∠C,∴∠AED=∠ADE,∴AD=AE,∴▱ADFE是菱形.10.1)证明:∵∠ACB=90°,∴AC⊥EC.又∵EG⊥AB,AE是∠BAC的平分线,∴GE=CE.在Rt△AEG与Rt△AEC中,,∴Rt△AEG≌Rt△AEC(HL);(2)解:△CEF是等腰三角形.理由如下:∵CD是AB边上的高,∴CD⊥AB.又∵EG⊥AB,∴EG∥CD,∴∠CFE=∠GEA.又由(1)知,Rt△AEG≌Rt△AEC,∴∠GEA=∠CEA,∴∠CEA=∠CFE,即∠CEF=∠CFE,∴CE=CF,即△CEF是等腰三角形;(3)解:四边形GECF是菱形.理由如下:∵由(1)知,Rt△AEG≌Rt△AEC,则GE=EC;由(2)知,CE=CF,∴GE=EC=FC.又∵EG∥CD,即GE∥FC,∴四边形GECFR是菱形.11.∵D、E、F分别是△ABC三边的中点,∴DEAC,EFAB,∴四边形ADEF为平行四边形.又∵AC=AB,∴DE=EF.∴四边形ADEF为菱形.12.∵M、E、分别为AD、BD、的中点,∴ME∥AB,ME=AB,同理:FH∥AB,FH=AB,∴四边形MENF是平行四边形,∵M.F是AD,AC中点,∴MF=DC,∵AB=CD,∴MF=ME,∴四边形MENF为菱形13.∵AE平分∠BAD,∴∠BAE=∠DAE,…(1分)在△BAE和△DAE中,菱形的判定---第9页共12页∵,∴△BAE≌△DAE(SAS)…(2分)∴BE=DE,…(3分)∵AD∥BC,∴∠DAE=∠AEB,…(4分)∴∠BAE=∠AEB,∴AB=BE,…(5分)∴AB=BE=DE=AD,…(6分)∴四边形ABED是菱形.14.∵AB=AC,M、O、N分别是AB、BC、CA的中点,∴AM=AB=AC=AN,M0∥AC,NO∥AB,且MO=AC=AN,NO=AB=AM(三角形中位线定理),∴AM=MO=AN=NO,∴四边形AMON是菱形(四条边都相等的四边形是菱形)15.证法一:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,