数学北(理)第六章数列常考题型强化练——数列23456789110A组专项基础训练23456789110A组专项基础训练1.设等差数列{an}前n项和为Sn,若a1=-11,a4+a6=-6,则当Sn取最小值时,n等于()A.6B.7C.8D.9解析设该数列的公差为d,则a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,∴Sn=-11n+nn-12×2=n2-12n=(n-6)2-36,∴当n=6时,取最小值.AA组专项基础训练234567891102.已知{an}为等比数列,Sn是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为54,则S5等于()A.35B.33C.31D.29解析设数列{an}的公比为q,则由等比数列的性质知,a2·a3=a1·a4=2a1,即a4=2.由a4与2a7的等差中项为54知,a4+2a7=2×54,∴a7=122×54-a4=14.∴q3=a7a4=18,即q=12,∴a4=a1q3=a1×18=2,∴a1=16,∴S5=161-1251-12=31.CA组专项基础训练234567891103.已知Sn为数列{an}的前n项和,且满足2an-a1=S1·Sn(a1≠0,n∈N+),则a7等于()A.16B.32C.64D.128解析令n=1,则a1=1,当n=2时,2a2-1=S2=1+a2,解得a2=2,当n≥2时,由2an-1=Sn,得2an-1-1=Sn-1,两式相减,解得2an-2an-1=an,即an=2an-1,于是数列{an}是首项为1,公比为2的等比数列,因此an=2n-1.故a7=26=64.CA组专项基础训练234567891104.已知等差数列{an}的公差d=-2,a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99的值是()A.-78B.-82C.-148D.-182解析∵a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7+…+a97+2d×33=50+66×(-2)=-82.BA组专项基础训练234567891105.设等差数列{an}的前n项和是Sn,若-ama1-am+1(m∈N+,且m≥2),则必定有()A.Sm0,且Sm+10B.Sm0,且Sm+10C.Sm0,且Sm+10D.Sm0,且Sm+10解析-ama1-am+1⇔a1+am0,a1+am+10.易得Sm=a1+am2·m0,Sm+1=a1+am+12·(m+1)0.AA组专项基础训练234567891106.若数列{an}满足1an+1-1an=d(n∈N+,d为常数),则称数列{an}为调和数列,已知数列1xn为调和数列且x1+x2+…+x20=200,则x5+x16=________.解析由题意知,若{an}为调和数列,则1an为等差数列,∴由1xn为调和数列,可得数列{xn}为等差数列,由等差数列的性质知,x5+x16=x1+x20=x2+x19=…=x10+x11=20010=20.20A组专项基础训练234567891107.已知数列{an}的前n项和为Sn,且Sn=2n-an,则数列{an}的通项公式an=______________.解析由于Sn=2n-an,所以Sn+1=2(n+1)-an+1,后式减去前式,得Sn+1-Sn=2-an+1+an,即an+1=12an+1,变形为an+1-2=12(an-2),则数列{an-2}是以a1-2为首项,12为公比的等比数列.又a1=2-a1,即a1=1.则an-2=(-1)12n-1,所以an=2-12n-1.2-12n-1A组专项基础训练234567891108.已知等比数列an中,各项都是正数,且a1,12a3,2a2成等差数列,则a9+a10a7+a8的值为________.解析设等比数列{an}的公比为q,∵a1,12a3,2a2成等差数列,∴a3=a1+2a2.∴a1q2=a1+2a1q.∴q2-2q-1=0.∴q=1±2.∵各项都是正数,∴q>0.∴q=1+2.∴a9+a10a7+a8=q2=(1+2)2=3+22.3+22A组专项基础训练234567891109.已知等差数列{an}的前n项和为Sn,n∈N+,a3=5,S10=100.(1)求数列{an}的通项公式;(2)设bn=+2n,求数列{bn}的前n项和Tn.解(1)设等差数列{an}的公差为d,na2由题意,得a1+2d=5,10a1+10×92d=100,解得a1=1,d=2,所以an=2n-1.(2)因为bn=+2n=12×4n+2n,na2所以Tn=b1+b2+…+bn=12(4+42+…+4n)+2(1+2+…+n)=4n+1-46+n2+n=23×4n+n2+n-23.A组专项基础训练2345678911010.已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(1)设Sk=2550,求a和k的值;(2)设bn=Snn,求b3+b7+b11+…+b4n-1的值.解(1)由已知得a1=a-1,a2=4,a3=2a,又a1+a3=2a2,∴(a-1)+2a=8,即a=3.∴a1=2,公差d=a2-a1=2.由Sk=ka1+kk-12d,得2k+kk-12×2=2550,即k2+k-2550=0,解得k=50或k=-51(舍去).∴a=3,k=50.10.已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(1)设Sk=2550,求a和k的值;(2)设bn=Snn,求b3+b7+b11+…+b4n-1的值.A组专项基础训练23456789110(2)由Sn=na1+nn-12d,得Sn=2n+nn-12×2=n2+n.∴bn=Snn=n+1.∴{bn}是等差数列.则b3+b7+b11+…+b4n-1=(3+1)+(7+1)+(11+1)+…+(4n-1+1)=4+4nn2.∴b3+b7+b11+…+b4n-1=2n2+2n.B组专项能力提升23451B组专项能力提升234511.已知数列{an}是首项为a1=4的等比数列,且4a1,a5,-2a3成等差数列,则其公比q等于()A.1B.-1C.1或-1D.2解析依题意,有2a5=4a1-2a3,即2a1q4=4a1-2a1q2,整理得q4+q2-2=0,解得q2=1(q2=-2舍去),所以q=1或q=-1.CB组专项能力提升234512.在直角坐标系中,O是坐标原点,P1(x1,y1),P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是()A.1B.2C.3D.4解析由等差、等比数列的性质,可求得x1=2,x2=3,y1=2,y2=4,∴P1(2,2),P2(3,4).∴21POPS=1.AB组专项能力提升234513.已知数列{an}满足:a1=1,an=1+,n为偶数,12+,n为奇数,n=2,3,4,…,设bn=,n=1,2,3,…,则数列{bn}的通项公式是________.解析由题意,得对于任意的正整数n,bn=+1,22na212na112na12na∴bn+1=+1,na2又=2bn,)1(21)12(112222nnnaaa∴bn+1=2bn,又b1=a1+1=2,∴{bn}是首项为2,公比为2的等比数列,∴bn=2n.bn=2nB组专项能力提升234514.某音乐酒吧的霓虹灯是用,,三个不同音符组成的一个含n+1(n∈N+)个音符的音符串,要求由音符开始,相邻两个音符不能相同.例如n=1时,排出的音符串是,;n=2时,排出的音符串是,,,;…….记这种含n+1个音符的所有音符串中,排在最后一个的音符仍是的音符串的个数为an.故a1=0,a2=2.则(1)a4=________;(2)an=________.B组专项能力提升23451解析由题意知,a1=0,a2=2=21-a1,a3=2=22-a2,a4=6=23-a3,a5=10=24-a4,所以an=2n-1-an-1,所以an-1=2n-2-an-2,两式相减得an-an-2=2n-2.当n为奇数时,利用累加法得an-a1=21+23+…+2n-2=2n-23,所以an=2n-23.B组专项能力提升23451当n为偶数时,利用累加法得an-a2=22+24+…+2n-2=2n-223,所以an=2n+23.综上所述,an=2n+2-1n3.答案(1)6(2)2n+2-1n3B组专项能力提升234515.已知数列{an}的前n项和Sn与通项an满足Sn=12-12an.(1)求数列{an}的通项公式;(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=1b1+1b2+…+1bn,求T2012;(3)若cn=an·f(an),求{cn}的前n项和Un.B组专项能力提升23451解(1)当n=1时,a1=13,当n≥2时,an=Sn-Sn-1,又Sn=12-12an,所以an=13an-1,即数列{an}是首项为13,公比为13的等比数列,故an=13n.(2)由已知可得f(an)=log313n=-n,则bn=-1-2-3-…-n=-nn+12,B组专项能力提升23451故1bn=-21n-1n+1,又Tn=-21-12+12-13+…+1n-1n+1=-21-1n+1,所以T2012=-40242013.(3)由题意得cn=(-n)·13n,故Un=c1+c2+…+cn=-1×131+2×132+…+n·13n,则13Un=-1×132+2×133+…+n·13n+1,B组专项能力提升23451两式相减可得23Un=-131+132+…+13n-n·13n+1=-121-13n+n·13n+1=-12+12·13n+n·13n+1,则Un=-34+34·13n+32n·13n+1.