2017年高考新课标1理科数学及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共24页2017年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x|x1},B={x|31x},则A.B.C.D.(2)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.B.C.D.(3)设有下面四个命题:若复数满足,则;:若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为A.B.C.D.(4)记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.8{|0}ABxxABR{|1}ABxxAB14π812π41pz1zRzR2pz2zRzR3p12,zz12zzR12zz4pzRzR13,pp14,pp23,pp24,ppnS{}nan4524aa648S{}na第2页共24页(5)函数在单调递减,且为奇函数.若,则满足的的取值范围是A.B.C.D.(6)展开式中的系数为A.15B.20C.30D.35(7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.16(8)右面程序框图是为了求出满足3n−2n1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2()fx(,)(11)f21()1xfx[2,2][1,1][0,4][1,3]621(1)(1)xx2x第3页共24页(9)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2(10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.10(11)设x,y,z为正数,且,则A.2x3y5zB.5z2x3yC.3y5z2xD.3y2x5z(12)几位大学生响应国家的创业号召,开发了一款应用软件。为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。求满足如下条件的最小整数N:N100且该数列的前N项和为2的整数幂。那么该款软件的激活码是A.440B.330C.220D.110第Ⅱ卷二、填空题:本大题共4小题,每小题5分(13)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.2π3π6π1212π612π12235xyz第4页共24页(14)设x,y满足约束条件,则的最小值为________.(15)已知双曲线C:(a0,b0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点。若∠MAN=60°,则C的离心率为______.(16)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.三.解答题:解答应写出文字说明,证明过程或演算步骤.(一)必考题:共60.(17)(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.21210xyxyxy32zxy22221xyab23sinaA第5页共24页(18)(12分)如图,在四棱锥P-ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.90BAPCDP90APD第6页共24页19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,,其中为抽取的第个零件的尺寸,.用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量服从正态分布,则,,.2(,)N(3,3)(1)PXX(3,3)16119.9716iixx161622221111()(16)0.2121616iiiisxxxxixi1,2,,16ixˆsˆˆˆˆˆ(3,3)Z2(,)N(33)0.9974PZ160.99740.95920.0080.09第7页共24页20.(12分)已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.2222=1xyab3232第8页共24页21.(12分)已知函数ae2x+(a﹣2)ex﹣x.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.)fx(()fx()fx第9页共24页(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。(22)[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若a=−1,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求a.(23)[选修4—5:不等式选讲](10分)已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.3cos,sin,xy4,1,xattyt(为参数)17第10页共24页2017年普通高等学校招生全国统一考试(全国I卷)理科数学。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合131xAxxBx,,则()A.0ABxxB.ABRC.1ABxxD.AB【答案】A【解析】1Axx,310xBxxx∴0ABxx,1ABxx,选A2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4【答案】B【解析】设正方形边长为2,则圆半径为1则正方形的面积为224,圆的面积为2π1π,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248故选B3.设有下面四个命题()1p:若复数z满足1zR,则zR;2p:若复数z满足2zR,则zR;3p:若复数12zz,满足12zzR,则12zz;第11页共24页4p:若复数zR,则zR.A.13pp,B.14pp,C.23pp,D.24pp,【答案】B【解析】1:p设zabi,则2211abizabiabR,得到0b,所以zR.故1P正确;2:p若z21,满足2zR,而zi,不满足2zR,故2p不正确;3:p若1z1,2z2,则12zz2,满足12zzR,而它们实部不相等,不是共轭复数,故3p不正确;4:p实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p正确;4.记nS为等差数列na的前n项和,若4562448aaS,,则na的公差为()A.1B.2C.4D.8【答案】C【解析】45113424aaadad61656482Sad联立求得11272461548adad①②3①②得211524d624d4d∴选C5.函数fx在,单调递减,且为奇函数.若11f,则满足121fx≤≤的x的取值范围是()A.22,B.11,C.04,D.13,【答案】D【解析】因为fx为奇函数,所以111ff,于是121fx≤≤等价于121ffxf≤≤|又fx在,单调递减121x≤≤3x1≤≤故选D6.62111xx展开式中2x的系数为A.15B.20C.30D.35【答案】C.第12页共24页【解析】66622111+1111xxxxx对61x的2x项系数为2665C152对6211xx的2x项系数为46C=15,∴2x的系数为151530故选C7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A.10B.12C.14D.16【答案】B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面24226S梯6212S全梯故选B8.右面程序框图是为了求出满足321000nn的最小偶数n,那么在和两个空白框中,可以分别填入第13页共24页A.1000A和1nnB.1000A和2nnC.1000A≤和1nnD.1000A≤和2nn【答案】D【答案】因为要求A大于1000时输出,且框图中在“否”时输出∴“”中不能输入A1000排除A、B又要求n为偶数,且n初始值为0,“”中n依次加2可保证其为偶故选D9.已知曲线1:cosCyx,22π:sin23Cyx,则下面结论正确的是()A.把1C上各点的横坐标伸长到原来的2倍,纵

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功