2011年湖南省高考数学试卷(理科)菁优网©2010-2013菁优网2011年湖南省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则()A.a=1,b=1B.a=﹣1,b=1C.a=﹣1,b=﹣1D.a=1,b=﹣12.(5分)(2011•湖南)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为()A.9π+42B.36π+18C.D.4.(5分)(2011•湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,.P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”5.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为()A.4B.3C.2D.1菁优网©2010-2013菁优网6.(5分)(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A.B.1C.D.7.(5分)(2011•湖南)设m>1,在约束条件下,目标函数Z=X+my的最大值小于2,则m的取值范围为()A.(1,)B.(,+∞)C.(1,3)D.(3,+∞)8.(5分)(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.二、填空题(共8小题,每小题5分,满分35分)9.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数为_________.10.(5分)(2011•湖南)设x,y∈R,且xy≠0,则的最小值为_________.11.(2011•湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交与点F,则AF的长为_________.12.(5分)(2011•湖南)设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S9=_________.13.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,,则输出的数等于_________.菁优网©2010-2013菁优网14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,则=_________.15.(5分)(2011•湖南)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该院内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=_________;(2)P(B|A)=_________.16.(5分)(2011•湖南)对于n∈N+,将n表示n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,a1为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0,I(4)=2),则(1)I(12)=_________;(2)=_________.三、解答题(共6小题,满分75分)17.(12分)(2011•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA﹣cos(B+)的最大值,并求取得最大值时角A、B的大小.18.(12分)(2011•湖南)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望.19.(12分)(2011•湖南)如图,在圆锥PO中,已知PO=,⊙O的直径AB=2,C是的中点,D为AC的中点.(Ⅰ)证明:平面POD⊥平面PAC;菁优网©2010-2013菁优网(Ⅱ)求二面角B﹣PA﹣C的余弦值.20.(13分)(2011•湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为c(c∈R).E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v﹣c|×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时.(Ⅰ)写出y的表达式(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少.21.(13分)(2011•湖南)如图,椭圆C1:=1(a>b>0)的离心率为,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.(Ⅰ)求C1,C2的方程;(Ⅱ)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交与D,E.(i)证明:MD⊥ME;(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=?请说明理由.22.(13分)(2011•湖南)已知函数f(x)=x3,g(x)=x+.(Ⅰ)求函数h(x)=f(x)﹣g(x)的零点个数.并说明理由;(Ⅱ)设数列{an}(n∈N*)满足a1=a(a>0),f(an+1)=g(an),证明:存在常数M,使得对于任意的n∈N*,都有an≤M.菁优网©2010-2013菁优网菁优网©2010-2013菁优网2011年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则()A.a=1,b=1B.a=﹣1,b=1C.a=﹣1,b=﹣1D.a=1,b=﹣1考点:复数相等的充要条件.2533830专题:计算题.分析:利用复数的乘法运算将等式化简;利用复数相等实部、虚部分别相等;列出方程求出a,b的值.解答:解:(a+i)i=b+i即﹣1+ai=b+i∴a=1,b=﹣1故选D点评:本题考查两个复数相等的充要条件:实部、虚部分别相等.2.(5分)(2011•湖南)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件考点:集合关系中的参数取值问题.2533830专题:压轴题.分析:先由a=1判断是否能推出“N⊆M”;再由“N⊆M”判断是否能推出“a=1”,利用充要条件的定义得到结论.解答:解:当a=1时,M={1,2},N={1}有N⊆M当N⊆M时,a2=1或a2=2有所以“a=1”是“N⊆M”的充分不必要条件故选A点评:本题考查利用充要条件的定义判断一个命题是另一个命题的条件问题.3.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为()A.9π+42B.36π+18C.D.考点:由三视图求面积、体积.2533830专题:计算题.菁优网©2010-2013菁优网分析:由三视图可知,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,分别做出两个几何体的体积相加.解答:解:由三视图可知,几何体是一个简单的组合体,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,四棱柱的体积3×3×2=18,球的体积是,∴几何体的体积是18+,故选D.点评:本题考查由三视图求面积和体积,考查球体的体积公式,考查四棱柱的体积公式,本题解题的关键是由三视图看出几何图形,是一个基础题.4.(5分)(2011•湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,.P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”考点:独立性检验的应用.2533830专题:常规题型.分析:题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.解答:解:由题意算得,.∵7.8>6.635,∴有0.01=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选C点评:本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.菁优网©2010-2013菁优网5.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为()A.4B.3C.2D.1考点:双曲线的简单性质.2533830专题:计算题.分析:先求出双曲线的渐近线方程,再求a的值.解答:解:的渐近线为y=,∵y=与3x±2y=0重合,∴a=2.故选C.点评:本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.6.(5分)(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A.B.1C.D.考点:定积分在求面积中的应用.2533830专题:计算题.分析:为了求得与x轴所围成的不规则的封闭图形的面积,可利用定积分求解,积分的上下限分别为与,cosx即为被积函数.解答:解:由定积分可求得阴影部分的面积为S=cosxdx==﹣(﹣)=,所以围成的封闭图形的面积是.故选D.点评:本小题主要考查定积分的简单应用、定积分、导数的应用等基础知识,考查运算求解能力,化归与转化思想、考查数形结合思想,属于基础题.菁优网©2010-2013菁优网7.(5分)(2011•湖南)设m>1,在约束条件下,目标函数Z=X+my的最大值小于2,则m的取值范围为()A.(1,)B.(,+∞)C.(1,3)D.(3,+∞)考点:简单线性规划的应用.2533830专题:压轴题;数形结合.分析:根据m>1,我们可以判断直线y=mx的倾斜角位于区间(,)上,由此我们不难判断出满足约束条件的平面区域的形状,再根据目标函数Z=X+my对应的直线与直线y=mx垂直,且在直线y=mx与直线x+y=1交点处取得最大值,由此构造出关于m的不等式组,解不等式组即可求出m的取值范围.解答:解:∵m>1故直线y=mx与直线x+y=1交于点,目标函数Z=X+my对应的直线与直线y=mx垂直,且在点,取得最大值其关系如下图所示:即又∵