12011年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则()A.a=1,b=1B.a=﹣1,b=1C.a=﹣1,b=﹣1D.a=1,b=﹣1【考点】复数相等的充要条件.菁优网版权所有【专题】计算题.【分析】利用复数的乘法运算将等式化简;利用复数相等实部、虚部分别相等;列出方程求出a,b的值.【解答】解:(a+i)i=b+i即﹣1+ai=b+i∴a=1,b=﹣1故选D【点评】本题考查两个复数相等的充要条件:实部、虚部分别相等.2.(5分)(2011•湖南)设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【考点】集合关系中的参数取值问题.菁优网版权所有【专题】集合.【分析】先由a=1判断是否能推出“N⊆M”;再由“N⊆M”判断是否能推出“a=1”,利用充要条件的定义得到结论.【解答】解:当a=1时,M={1,2},N={1}有N⊆M当N⊆M时,a2=1或a2=2有所以“a=1”是“N⊆M”的充分不必要条件.故选A.【点评】本题考查利用充要条件的定义判断一个命题是另一个命题的条件问题.3.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为()A.9π+42B.36π+18C.D.【考点】由三视图求面积、体积.菁优网版权所有【专题】计算题.2【分析】由三视图可知,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,分别做出两个几何体的体积相加.【解答】解:由三视图可知,几何体是一个简单的组合体,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,四棱柱的体积3×3×2=18,球的体积是,∴几何体的体积是18+,故选D.【点评】本题考查由三视图求面积和体积,考查球体的体积公式,考查四棱柱的体积公式,本题解题的关键是由三视图看出几何图形,是一个基础题.4.(5分)(2011•湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,.P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【考点】独立性检验的应用.菁优网版权所有【专题】常规题型.【分析】题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.【解答】解:由题意算得,.∵7.8>6.635,∴有0.01=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”3故选:C.【点评】本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.5.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为()A.4B.3C.2D.1【考点】双曲线的简单性质.菁优网版权所有【专题】计算题.【分析】先求出双曲线的渐近线方程,再求a的值.【解答】解:的渐近线为y=,∵y=与3x±2y=0重合,∴a=2.故选C.【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.6.(5分)(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A.B.1C.D.【考点】定积分在求面积中的应用.菁优网版权所有【专题】计算题.【分析】为了求得与x轴所围成的不规则的封闭图形的面积,可利用定积分求解,积分的上下限分别为与,cosx即为被积函数.【解答】解:由定积分可求得阴影部分的面积S=cosxdx==﹣(﹣)=,所以围成的封闭图形的面积是.故选D.4【点评】本小题主要考查定积分的简单应用、定积分、导数的应用等基础知识,考查运算求解能力,化归与转化思想、考查数形结合思想,属于基础题.7.(5分)(2011•湖南)设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为()A.(1,)B.(,+∞)C.(1,3)D.(3,+∞)【考点】简单线性规划的应用.菁优网版权所有【专题】压轴题;数形结合.【分析】根据m>1,我们可以判断直线y=mx的倾斜角位于区间(,)上,由此我们不难判断出满足约束条件的平面区域的形状,再根据目标函数Z=X+my对应的直线与直线y=mx垂直,且在直线y=mx与直线x+y=1交点处取得最大值,由此构造出关于m的不等式组,解不等式组即可求出m的取值范围.【解答】解:∵m>1故直线y=mx与直线x+y=1交于点,目标函数Z=X+my对应的直线与直线y=mx垂直,且在点,取得最大值其关系如下图所示:即,解得1﹣<m<又∵m>1解得m∈(1,)故选:A.5【点评】本题考查的知识点是简单线性规划的应用,其中根据平面直线方程判断出目标函数Z=X+my对应的直线与直线y=mx垂直,且在点取得最大值,并由此构造出关于m的不等式组是解答本题的关键.8.(5分)(2011•湖南)设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1B.C.D.【考点】导数在最大值、最小值问题中的应用.菁优网版权所有【专题】计算题;压轴题;转化思想.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.二、填空题(共8小题,每小题5分,满分35分)69.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数为2.【考点】简单曲线的极坐标方程;双曲线的参数方程.菁优网版权所有【专题】计算题.【分析】先根据sin2α+cos2α=1,求出曲线C1的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出曲线C2的直角坐标方程,然后判定交点个数即可.【解答】解:∵曲线C1的参数方程为(α为参数),sin2α+cos2α=1∴曲线C1的直角坐标方程为x2+(y﹣1)2=1∵ρcosθ=x,ρsinθ=y,p(cosθ﹣sinθ)+1=0∴曲线C2的方程为x﹣y+1=0而圆心到直线的距离d=0<r,故C1与C2的交点个数为2故答案为:2【点评】本题考查点的极坐标和直角坐标的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互,属于基础题.10.(5分)(2011•湖南)设x,y∈R,且xy≠0,则的最小值为9.【考点】基本不等式.菁优网版权所有【专题】计算题.【分析】对展开,利用基本不等式即可求得其最小值.【解答】解:∵x,y∈R,且xy≠0,∴=1+4+≥5+2=9当且仅当时等号成立,∴的最小值为9.故答案为9.【点评】此题是个基础题.考查利用基本不等式求最值,注意正、定、等,考查学生利用知识分析解决问题的能力和计算能力.711.(2011•湖南)如图,A,E是半圆周上的两个三等分点,直径BC=4,AD⊥BC,垂足为D,BE与AD相交于点F,则AF的长为.【考点】与圆有关的比例线段.菁优网版权所有【专题】选作题.【分析】根据半圆的三等分点,得到三个弧对应的角度是60°,根据直径所对的圆周角是直角得到直角三角形的有关长度,做出要求的线段的长度.【解答】解:∵A,E是半圆周上的两个三等分点∴弧EC是一个60°的弧,∴∠EBC=30°,则CE=2,连接BA,则BA=2,∴在含有30°角的直角三角形中,BD=1,DF=,AD=∴AF=,故答案为:【点评】本题考查与圆有关的比例线段,考查圆周角定理,考查含有30°角的直角三角形的有关运算,本题是一个基础题.12.(5分)(2011•湖南)设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S9=81.【考点】等差数列的前n项和.菁优网版权所有【专题】计算题.【分析】先根据数列{an}为等差数列,求出公差d,然后根据等差数列的前n项和公式求得S9.【解答】解:∵数列{an}为等差数列,∴an=a1+(n﹣1)d,Sn=na1+∵a1=1,a4=7∴a4=1+(4﹣1)d=7∴d=2∴S9=9×1+×2=81故答案为:81【点评】本题主要考查了等差数列的通项公式和前n项和公式.813.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,x2=2,x3=3,=2,则输出的数等于.【考点】循环结构.菁优网版权所有【专题】图表型.【分析】先弄清该算法功能,S=0+(1﹣2)2=1,i=1,满足条件i<3,执行循环体,依此类推,当i=3,不满足条件i<3,退出循环体,输出所求即可.【解答】解:S=0+(1﹣2)2=1,i=1,满足条件i<3,执行循环体,i=2S=1+(2﹣2)2=1,i=2,满足条件i<3,执行循环体,i=3S=1+(3﹣2)2=2,i=3,不满足条件i<3,退出循环体,则S=×2=故答案为:【点评】本题主要考查了方差的计算,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.14.(5分)(2011•湖南)在边长为1的正三角形ABC中,设,,则=﹣.【考点】向量在几何中的应用.菁优网版权所有【专题】计算题;数形结合;转化思想.【分析】根据,,确定点D,E在正三角形ABC中的位置,根据向量加法满足三角形法则,把用表示出来,利用向量的数量积的运算法则和定义式即可求得的值.【解答】解:∵,∴D为BC的中点,9∴,∵,∴,∴=)==﹣,故答案为:﹣.【点评】此题是个中档题,考查向量的加法和数量积的运算法则和定义,体现了数形结合的思想.15.(5分)(2011•湖南)如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=;(2)P(B|A)=.【考点】条件概率与独立事件.菁优网版权所有【专题】计算题;压轴题.【分析】此题是个几何概型.用面积法求出事件A“豆子落在正方形EFGH内”的概率p(A),同理求出P(AB),根据条件概率公式P(B|A)=即可求得结果.【解答】解:用A表示事件“豆子落在正方形EFGH内”,∴P(A)==,B表示事件“豆子落在扇形OHE(阴影部分)内”,P(AB)==,∴P(B|A)=.10故答案为:.【点评】此题是个基础题.考查条件概率的计算公式,同时考查学生对基础知识的记忆、理解和熟练程度.16.(5分)(2011•湖南)对于n∈N+,将n表示n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak×20,当i=0时,ai=1,当1≤i≤k时,a1为0或1.记I(n)为上述表示中ai为0的个数(例如:1=1×20,4=1×22+0×21+0×20,故I(1)=0