DeompositionoftensorprodutsofmodularirreduiblesforSL2StephenDotyandAnneHenkeMarh20,2002AbstratWeusetiltingmodulestostudythestrutureofthetensorprodutoftwosimplemodulesforthealgebraigroupSL2,inpositivehara-teristi,obtainingatwistedtensorproduttheoremforitsindeom-posablediretsummands.Variousotherrelatedresultsareobtained,andnumerousexamplesareomputed.IntrodutionWestudythestrutureofL L0whereL;L0aresimplemodulesforthealgebraigroupSL2=SL2(k)overanalgebraiallylosed eldkofposi-tiveharateristip.Thesolutiontothisproblemiswell-knownandeasilyobtainedinharateristizero,butinpositiveharateristitheproblemissigni ant.GivenL L0,theinitialquestionistodesribeitsindeomposablediretsummands.ThisisansweredinTheorem2.1.Itturnsoutthateahsuhdiretsummandisexpressibleasatwistedtensorprodutofertain\smallindeomposabletiltingmoduleswherethestrutureofthelatterisompletelyunderstood(seeLemma1.1).Wenotethatforp=2themoduleL L0isalwaysindeomposable,inontrasttowhathappensforpodd.Theindeomposablesummandsthemselvesarealwaysontravariantlyself-dual,withsimplesole(andhead),andtheyourassubquotientsoftiltingmodules(seeTheorem2.7).Ontheotherhand,eahtiltingmoduleours1asadiretsummandofsomeL L0(seeTheorem2.6).TheseresultsprovidethestartingpointforalulatingtheexamplesinSetion5and6.Infat,wesuggestthatthereaderstartbybrowsingthroughtheexamplesinSetions5and6.Theloserelationshipbetweentensorprodutsofsimplesandtiltingmoduleswillbeapparentfromtheseexamples.Sineexamplesoftiltingmodulestruturearerareintheliterature,theseomputationsshouldbeofindependentinterest.OurgeneralresultsaregiveninSetions2through4.Inpartiular,welas-sifypreiselywhihindeomposablesummandsofL L0aretilting,andweobtainaresultexpressingertainindeomposabletiltingmodulesastensorprodutsoftwosimplemodules(usuallyinmorethanoneway).InSetions3and4westudyindetailthetensorprodutsL L(1)whereLisarbitrary.Hereweobtainalassofuniserialandbiserialtiltingmodulesandtheir\shifts.ThemethodsusedhereanbeappliedtoobtainthestrutureofalltensorprodutsL L0whereL0=L(a)witha p 1,althoughweformulatethepreisestatementonlyforL L(2).TheresultsofthepaperarerelatedtoresultsofAlperin[A1℄,BrundanandKleshhev[BK℄,andErdmannandHenke[EH1,EH2℄.OurmaintehnialtoolsareSteinberg’stensorproduttheoremandDonkin’sinterpretation[Do℄,intheontextofalgebraigroups,ofRingel’stheory[R℄oftiltingmodules.1PreliminariesThesetX=X(T)ofweightsforamaximaltorusTinthealgebraigroupSL2willbeidenti edwiththesetZofintegers,asusual.Thendominantweightsorrespondtononnegativeintegers.IfrissuhthenwewriteL(r)forthesimpleSL2-moduleofhighestweightrand (r)fortheWeylmoduleofthatsamehighestweight.Wewriter(r)forthetranspose(ontravariant)dualof (r).ByatheoremofRingel(see[R℄),thereexistsauniqueindeom-posablemoduleT(r)ofhighestweightrsuhthatT(r)hasboth - ltrationandr- ltration.ThemodulesT(r)arethe(partial)tiltingmodules.IfamoduleMhasaompositionseries0=M0 M1 Mk=MwithsimplefatorsSi =Mi=Mi 1fori=1;:::;kthenwedenotethatomposition2seriesbywriting[S1;S2;:::;Sk℄:Webeginwithsomeeasylemmasontiltingmodules.Our rstresultde-sribesthemodulestrutureofertainsmalltiltingmodules,whihwillturnouttobethebasimaterialoutofwhihalltiltingmodulesandtensorprodutsofsimplesarebuiltup.Lemma1.1(a)For0 u p 1wehaveT(u)=L(u)=r(u)= (u).(b)Forp u 2p 2themoduleT(u)isuniserialanditsuniqueompo-sitionserieshastheform[L(2p 2 u);L(u);L(2p 2 u)℄.Moreover,T(u)isanon-splitextensionof (2p 2 u)by (u)(or,dually,ofr(u)byr(2p 2 u)).Proof.Reallthatr(r) =Sr(E),therthsymmetripowerofthenaturalmoduleE.Part(a)followsimmediatelyfromthefatthatr(u)= (u)=L(u)issimplefor0 u p 1.Thisfatiswell-knownandfollowsforinstanefromthestronglinkagepriniple,orfromknownresults[D1℄onthestrutureofSr(E).Part(b)isaspeialaseof[EH2,Proposition2.3℄.Or:WriteG=SL2andsetG1=KerF(theFrobeniuskernel).AsobservedbyDonkin[Do,x2,Example1℄,for0 p 1wehaveanisomorphismT(2p 2 ) =Q( ),whereQ( )istheunique(uptoG-isomorphism)G-modulesuhthatQ( )jG1isisomorphiwiththeprojetiveoverofL( )jG1.TheexisteneofthisG-moduleliftfollowsfromresultsofJantzen,extendingearlierresultsofBallard.Nowweanapply[J,II,11.4Prop.℄toomputetheformalharaterofQ( ).Settingu=2p 2 andrestritingto0 p 2,weanapplytheaformentioneddesriptionofther’sassymmetripowerstoobtainpart(b)ofthelemma. Letusallthetiltingmodulesdesribedinthepreedingresultfundamental.Asweshallsee(inLemma1.4ahead)anytiltingmoduleforSL2anbeexpressedasatwistedtensorprodutoffundamentaltiltingmodules.More-over,inTheorem2.1weshallseethattheindeomposablesummandsofL L0analsobeexpressedassuhatwistedtensorprodut.(Theindeompos-ablesummandsarenotneessarilytilting,however.)For0 u 2p 2,we3denotebyeuthehighestweightofthesole(andhead)ofT(u),sothateu=(uifu p 1,2p 2 uotherwise:(1.2)Mostasesofthenextlemmaappearalreadyin[EH1,Lemma4℄.Lemma1.3LetL;L0betwosimplemodulesinthebottomalove,i.e.theirhighestweightsareinlusivelybetween0andp 1.ThenL L0istilting,andisomorphiwiththediretsumofT(u)asuvariesoverasetW(L;L0)ofweightswhihanbeomputedasfollows.Letr(resp.,s)bethelarger(resp.,smaller)ofthehighestweightsofL;L0.Listtheweightsr+s,r+s 2;:::;r s.Foreahu ponthislist,stri