试卷答案第1页(共33页)华侨大学信息科学与工程学院2010-2011学年二学期课程考试试卷答案(A卷)课程名称:信号与系统考试时间:120分钟年级:xxx级专业:xxx题目部分,(卷面共有50题,100分,各大题标有题量和总分)一、证明(50小题,共100分)1.证明(1)设12112()nniiniccccHppppp则1()()()intiiHptceut又12112()nniiniccccHppppp()11()()()()[()()]innkttittiiiiHptceuteceutHpte(2)设122()()rrcccHpppp则112()()()()rkrHptcctcteut而1221()12()()()()()()()[()()]rrrtrtcccHppppHptcctcteuteHpt综合(1)(2)故[()()]()()tHpteHpat得证2.证明[()()]()ftttdt试卷答案第2页(共33页)()()[()]()()()()[()()]()[()()()()]()()[()]()()[()]()()()()[()()]()()()()[(fttdtfttttfttdttfttfttdtfttdtfttdtfttttfttdtfttttf)()]()[()()()()]()[()()()()]ttdttfttfttdttfttfttdt()[()()2()()()()](0)(0)2(0)(0)(0)(0)tfttfttfttdtfff[(0)()]()[2(0)()]()[(0)()]()fttdtfttdtfttdt()()(0)()2(0)()(0)()fttftftft在这里利用了以下公式:()()()()(0)()()(0)()()(1)(0)kkkttdtttdtttdt3.证明2()()tttdt222()[()]()()()[()]ttdtttttttdt2()2()()()tttdttttdt22{2()()()[2()]}{()()()[()]}ttttttdtttttttdt2()[2()]()2()()2()()()ttdttttdttttdttttdt2(0)[2()]()ttdt2()2()ttt32()[()][2()]ttttttt=0试卷答案第3页(共33页)证明()()(1)!()nnnttnt用归纳法00()()(1)0!()tttt()()()[()]()()()[()]tttdtttdtttttttdt()()()()()()tttdtttdtttdt22()()(1)1!()()2()(1)2!()tttttttt又33()()()[()]tttdtttdt33()()()[()]ttttttdt2()[3()()]tttttdt233()()()()tttdttttdt(3)2()()ttdt3()(32)()(1)3!()tttt由归纳法可得()()(1)!()nnnttt4.证明:()()(3)tkrteuttk其波形如下图所示。在区间0,3内,试卷答案第4页(共33页)0(3)36333()(3)1lim()111tktttkNttNrteutkeeeeeeeeee即证明了(),03trtAet同时得到311Ae5.证明:设系统有n个自然频率1、2、…n,则12()()()()()()()nNpNpHpDpppp12112nniiniKKKKpppp故11()()()()()tinniiiiiKhtHpttKeUtp方程左边()11[()()]()()()tiinnttttiiiiHptehteKeUteKeUt(a)再看方程右边11()()()nniippiiiiKKHpHppp故()11()()()()()inntiiiiiKHpttKeUtp(b)可见式(a)、式(b)完全相等,若自然频率中有重根,也可用类似方法证明之,此处不再赘述。6.证明由于()()()()()()()()2()()()()fttfttfttfttfttftt且()()(0)()fttft()()(0)()(0)()fttftft试卷答案第5页(共33页)因而()()(0)()2(0)()2(0)()()()fttftftftftt2(0)()(0)()()()ftftftt①又()()(0)()(0)()fttftft②由式①=式②可得()()(0)()2(0)()(0)()fttftftft命题得证。7.解(3)(3)(3)33()()(3)[()(3)](3)(3)()(3)[(3)()(3)]tttkkkkttttrteuttkeuttkeutkeuteuteuteeututeut这是个等比数列求和问题当03t时,组数收敛3363()[(3)()](1)1ttterteeututeeee即()trtAe,其中311Ae8.证明21()0()()NjnkNnXkxne110022()cos[]()sin[]NNnnxnnkjxnnkNN()xn为纯虚序列,令()()xnjan()an为实序列则110022()()sin[]()cosNNnnXkannkjannkNN102()()sinNrnXkannkN102()()cos[]NinXkannkN试卷答案第6页(共33页)()rXk是k的奇函数,()iXk是k的偶函数其奇偶特性都应以/2N为对称中心。9.解10()[()]()NnkNnXkDFTxnWNk()()NxnRn为实序列()()nxxn120()NnxnN11220011()()NNkkXkNkNNN10.证明(1)()xn实偶函数,()Xk实偶函数()()xnxNn110022()()sin()sinNNinnnnXkxnkxNnkNN1102()2()sin[]()sinNnNnNnnkxnkxnNN()0iXk102()()cosNnXkxnnkN为实偶函数。(2)()xn为实奇函数,()Xk为虚奇函数()()xnxNn102()()cosNrnXkxnnkN102()cosNnxNnnkN试卷答案第7页(共33页)1102()2()cos()cosNnNnNnnkxnkxnNN()0rXk102()()sinNnnkXkjxnN为虚奇函数。(3)()xn虚偶函数,()Xk虚偶函数()()xnxNn()()xnjan110022()()()sin()sinNNrnnNnXkannkaNnkNN11022()sin()sinNnNnknknananNN()0rXk102()()cosNnXkjannkN为虚偶函数(4)()xn虚奇函数,()Xk实奇函数()()xnxNn()()xnjan110022()()cos()cosNNinnXkannkaNnnkNN12()cos()nNanNnkN102()cosNnnkanN()0iXk试卷答案第8页(共33页)102()()sinNnXkannkN为实奇函数。11.证明0000101010010010001000110000101000000000000246101012310103691111即问题得证00001010100(0)(2)(0)(2)100(1)(3)(1)001(0)(2)(3)001(1)(3)WxWxXXWxWxXWxWxXWxWx00110000100(0)100(0)(1)001(1)001(0)(0)(0)(0)(0)(0)(1)(1)(1)(3)(1)(1)WGWHGWHWGWHXGWHXXGWHXGWH12.证明:(1)0()()()eftftft000()[()()][cos()sin()]()cos()()sin()()cos()()sineeeFftfttjtdtfttdtjfttdtfttdtjfttdt试卷答案第9页(共33页)0()cos()()sineftatdtjfttdt[()][()],eeftRF0[()][()],mftjIF(2)()ft是复函数,()()()riftftjft[