IFUP-TH 2696 Topological Susceptibility at zero an

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

IFUP-TH26/96TopologicalSusceptibilityatzeroand niteTinSU(3)Yang-MillstheoryB.Alles,M.D'EliaandA.DiGiacomoDipartimentodiFisicadell'UniversitaandINFN,PiazzaTorricelli2,56126-Pisa,ItalyAbstractWedeterminethetopologicalsusceptibilityatT=0inpureSU(3)gaugetheoryanditsbehaviourat niteTacrossthedecon ningtransition.Weuseanimprovedtopologicalchargedensityoperator.dropssharplybyoneorderofmagnitudeatthedecon ningtemperatureTc.PartiallysupportedbyECContractCHEX-CT92-0051andbyMURST.1I.INTRODUCTIONTheflavoursingletaxialcurrentj5=γ5γ(1.1)isnotconservedinQCDbecauseofthetriangleanomaly[1]@j5(x)=2NfQ(x):(1.2)Ineq.(1.2)Q(x)isthetopologicalchargedensity,de nedasQ(x)=g2642Fa(x)Fa(x):(1.3)AsaconsequencethecorrespondingUA(1)isnotasymmetry[1].Thenonsingletpartnersj5a=γ5γa(1.4)areconserved,andthecorrespondingsymmetryisspontaneouslybroken,thepseudoscalaroctetbeingtheGoldstoneparticles.IfUA(1)wereasymmetry,eitherparitydoubletsshouldexist,or,incaseofspontaneousbreaking,theinequalitym0p3mshouldhold[2].Neitherofthesepredictionsistrueinnature,andthishasbeenknownastheUA(1)problemformanyyears,beforetheadventofQCD.HoweverUA(1)isasymmetryatleadingorderintheexpansionin1Nc[3],(Ncisthenumberofcolours).ThereareargumentsthattheleadingapproximationinthatexpansiondescribesthemainphysicsofQCD[4,5].Theanomalyisnonleading,andcanbeviewedasaperturbation.Oneofitse ectsistodisplacem0fromzero,whichcorrespondstotheGoldstoneparticleintheleadingorderapproximation,byanamountwhichisrelatedtothetopologicalsusceptibilityofthevacuumattheleadingorder.Thepredictionis[6,7]2Nff2=m2+m20−2m2K:(1.5)2Thetopologicalsusceptibilityisde nedasZd4xh0jT(Q(x)Q(0))j0i:(1.6)Leadingorderimpliesabsenceoffermionsandinthelanguageofthelatticethisisknownasquenchedapproximation.Latticeistheidealtooltocomputefrom rstprinciples.hasinfactbeendetermined[8]andisconsistentwiththepredictionofref.[6].Anadditionalhintinfavourofitistheindicationthatthe0massishigherinsectorswithhighertopologicalcharge[9].AquestionthenarisesnaturallywhethertheUA(1)symmetryisrestoredinquenchedQCDatthesametemperatureatwhichSUA(3)isrestored,i.e.atTc260MeV[10].Manymodels[11]predictthebehaviouroftheUA(1)chiralsymmetryatTc.AquitegeneralexpectationisthatthetopologicalsusceptibilityshoulddropatTc[12],sinceDebyescreeninginhibitstunnelingbetweenstatesofdi erentchiralityanddampsthedensityofinstantons.AttemptshavebeenmadeafewyearsagotostudythebehaviourofthroughTc[13,14].Thestatusisdiscussedinref.[14].Thedicultiesgobacktothede nitionofatopologicalchargeonthelattice.Thecorrectwaytode neit,accordingtothecommonlyacceptedprescriptionsof eldtheory,istointroduceonthelatticealocaloperatorQL(x)forthetopologicalchargedensitywhichtendstothecontinuumoperatorasthelatticespacinggoestozero.QLprovidesaregularizedversionofQ(x).Ingoingtothecontinuumlimitaproperrenormalizationmustbeperformed,likeinanyotherregularizationscheme.Aspeci cfeatureofQListhatonthelatticeitisnotthedivergenceofacurrent,likeinthecontinuum,andhenceitrenormalizesmultiplicatively:thismeansthatthelatticetopologicalchargeofacon gurationcanbenoninteger[15].InformulaeQL=Z( )Qa4+O(a6):(1.7)Asusual, 6=g20.Thetopologicalsusceptibilitycanbede nedonthelatticeasLhXxQL(x)QL(0)i:(1.8)3ThestandardrulesofrenormalizationthengiveL=Z( )2a4+M( )+O(a6);(1.9)whereM( )isanadditiverenormalizationcontainingmixingsofLtootheroperatorswiththesamequantumnumbersandlowerorequaldimensions[16].InformulaeM( )=B( )a4G2+P( ):(1.10)ThetermsproportionaltoP( )andB( )arerespectivelythemixingstotheidentityoperatorandtothedensityofactionG2hg242FaFai.TheadditiverenormalizationcomesfromthesingularitiesoftheproductQ(x)Q(0)asx!0andmustberemovedtobeconsistentwiththeprescriptionusedtoderiveeq.(1.5)[17].Thede nitionofQLisnotunique:in nitelymanyoperatorscanbede nedwhichobeyeq.(1.7)butdi erbytermsoforderO(a6).Thesimplestde nitionofQLis[18]QL(x)=−12924X=1~Tr((x)(x)):(1.11)Here~isthestandardLevi-Civitatensorforpositivedirectionswhilefornegativeonestherelation~=−~−holds.istheplaquetteinthe−plane.Withthisde nitionZ'0:18andthemixingMislargecomparedtothesignalinthescalingregion[19].ZandMcanbecomputednon-perturbatively[20{22].Althoughthe eld-theoreticmethodiscorrectinprinciple,itisunpleasantthatmostofthesignalisduetolatticearti-facts,whichhavethentoberemoved.Moreoveratthetimeofref.[14]thenon-perturbativedeterminationofZandMwasnotknown.Analternativemethodtodetermineisthesocalledcoolingtechnique[13]:theideaistofreezequantumfluctuationsbyalocalalgorithmwhichcoolsthelinksoneaftertheother.Themodesrelevantatadistancedarefrozenafteranumberofstepsn,whichisproportionaltod2,likeinadi usionprocess.Mostoftheinstantonsareexpectedtohaveasizeoftheorderofthecorrelationlength.Afterafewcoolingsteps,theeliminationoflocalfluctuationswillsuppressthemixingMandmakeZ'1,butthenumberofinstantonswill4bepreserved,sothatL'a4.InfactaplateauisreachedinQLafterafewcoolingsteps,whereQLisaninteger,whichstandsmanyfurthersteps[13].AtT=0andbelowTcthemethodworksverywellandagreesw

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功