等差数列与等比数列综合题例已知等差数列na满足:37a,5726aa,na的前n项和为nS.(Ⅰ)求na及nS;(Ⅱ)令bn=211na(nN*),求数列nb的前n项和nT.【解析】(Ⅰ)设等差数列na的公差为d,因为37a,5726aa,所以有112721026adad,解得13,2ad,所以321)=2n+1nan(;nS=n(n-1)3n+22=2n+2n。(Ⅱ)由(Ⅰ)知2n+1na,所以bn=211na=21=2n+1)1(114n(n+1)=111(-)4nn+1,所以nT=111111(1-+++-)4223nn+1=11(1-)=4n+1n4(n+1),即数列nb的前n项和nT=n4(n+1)。【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。例设nS为数列{}na的前n项和,2nSknn,*nN,其中k是常数.(I)求1a及na;(II)若对于任意的*mN,ma,2ma,4ma成等比数列,求k的值.解(Ⅰ)当1,111kSan,12)]1()1([,2221kknnnknknSSannnn()经验,,1n()式成立,12kknan(Ⅱ)mmmaaa42,,成等比数列,mmmaaa422.,即)18)(12()14(2kkmkkmkkm,整理得:0)1(kmk,对任意的Nm成立,10kk或例等比数列{na}的前n项和为ns,已知1S,3S,2S成等差数列(1)求{na}的公比q;(2)求1a-3a=3,求ns解:(Ⅰ)依题意有)(2)(2111111qaqaaqaaa由于01a,故022qq又0q,从而21-q5分(Ⅱ)由已知可得321211)(aa故41a从而))(()())((nnn211382112114S10分例已知数列}na满足,*11212,,2nnnaaaaanN’+2==.令1nnnbaa,证明:{}nb是等比数列;(Ⅱ)求}na的通项公式。(1)证1211,baa当2n时,1111,11()222nnnnnnnnnaabaaaaab所以nb是以1为首项,12为公比的等比数列。(2)解由(1)知111(),2nnnnbaa当2n时,121321()()()nnnaaaaaaaa21111()()22n111()2111()2n2211[1()]32n1521(),332n当1n时,111521()1332a。所以1*521()()332nnanN。例设数列na的前n项和为nS,已知21nnnbabS(Ⅰ)证明:当2b时,12nnan是等比数列;(Ⅱ)求na的通项公式解由题意知12a,且21nnnbabS11121nnnbabS两式相减得1121nnnnbaaba即12nnnaba①(Ⅰ)当2b时,由①知122nnnaa于是1122212nnnnnanan122nnan又111210na,所以12nnan是首项为1,公比为2的等比数列。(Ⅱ)当2b时,由(Ⅰ)知1122nnnan,即112nnan当2b时,由由①得1111122222nnnnnababb22nnbbab122nnbab因此11112222nnnnababb212nbbb得121122222nnnnabbnb例在数列{}na中,11111,(1)2nnnnaaan,(I)设nnabn,求数列{}nb的通项公式;(II)求数列{}na的前n项和nS解:(I)由已知有1112nnnaann112nnnbb利用累差迭加即可求出数列{}nb的通项公式:1122nnb(*nN)(II)由(I)知122nnnan,nS=11(2)2nkkkk111(2)2nnkkkkk而1(2)(1)nkknn,又112nkkk是一个典型的错位相减法模型,易得1112422nknkknnS=(1)nn1242nn例已知数列na的前n项和为nS,11a,且3231nnSa(n为正整数)(Ⅰ)求出数列na的通项公式;(Ⅱ)若对任意正整数n,nSk恒成立,求实数k的最大值.解:(Ⅰ)3231nnSa,①当2n时,3231nnSa.②由①-②,得02331nnnaaa.311nnaa)2(n.又11a,32312aa,解得312a.数列na是首项为1,公比为31q的等比数列.11131nnnqaa(n为正整数)(Ⅱ)由(Ⅰ)知nnS)31(123由题意可知,对于任意的正整数n,恒有nk31123,.数列n311单调递增,当1n时,数列中的最小项为32,必有1k,即实数k的最大值为1例各项均为正数的数列na中,nSa,11是数列na的前n项和,对任意Nn,有)(222RpppapaSnnn;⑴求常数p的值;⑵求数列na的通项公式;⑶记nnnnSb234,求数列nb的前n项和T。解:(1)由11a及)(222NnppapaSnnn,得:ppp221p(2)由1222nnnaaS①得1221211nnnaaS②由②—①,得)()(2212211nnnnnaaaaa即:0)())((2111nnnnnnaaaaaa0)122)((11nnnnaaaa由于数列na各项均为正数,1221nnaa即211nnaa数列na是首项为1,公差为21的等差数列,数列na的通项公式是2121)1(1nnan(3)由21nan,得:4)3(nnSnnnnnnnSb2234nnnT22322213213222)1(2222nnnnnT22)1(221)21(22222211132nnnnnnnnnT1(1)22nnTn例在数列).,2(322,311Nnnaaaannnn且中,(1)的值;求32,aa(2)设是等差数列;证明:nnnnbNnab),(23(3)求数列..nnSna项和的前解(1)),,2(322,311Nnnaaannn且1322212aa.13322323aa(2)对于任意,Nn3221232311111nnnnnnnnnaaaabb=13322111nn,数列nb是首项为0233231a,公差为1的等差数列.(3)由(2)得,,1)1(023nann).(32)1(Nnnann321)322()321(332nnnS,即.321232221432nnSnn设,21232221432nnnT则,2123222121543nnnT两式相减得,1432212222nnnnT,2)1(21)21(411nnn整理得,,2)2(41nnnT从而).(32)2(41NnnnSnn例已知数列na的首项211a,前n项和nnanS2.(Ⅰ)求证:nnanna21;(Ⅱ)记nnSbln,nT为nb的前n项和,求nenT的值.解:(1)由nnanS2①,得121)1(nnanS②,②-①得:nnanna21.(2)由nnanna21求得)1(1nnan.∴12nnanSnn,)1ln(lnlnnnSbnn(ln1ln2)(ln2ln3)(ln3ln4)(lnln(1))ln(1)nTnnn∴1)1ln(nenenTn.例等比数列{na}的前n项和为ns,已知1S,3S,2S成等差数列(1)求{na}的公比q;(2)求1a-3a=3,求ns解:(Ⅰ)依题意有)(2)(2111111qaqaaqaaa由于01a,故022qq又0q,从而21-q(Ⅱ)由已知可得321211)(aa故41a从而))(()())((nnn211382112114S例已知{na}是公比为q的等比数列,且12,,mmmaaa成等差数列.(1)求q的值;(2)设数列}{na的前n项和为nS,试判断12,,mmmSSS是否成等差数列?说明理由.解:(1)依题意,得2am+2=am+1+am∴2a1qm+1=a1qm+a1qm–1在等比数列{an}中,a1≠0,q≠0,∴2q2=q+1,解得q=1或21.(2)若q=1,Sm+Sm+1=ma1+(m+1)a1=(2m+1)a1,Sm+2=(m+2)a1∵a1≠0,∴2Sm+2≠Sm+Sm+1若q=21,Sm+1=m2m)21(6132)21(1)21(1Sm+Sm+1=)21(1)21(1)21(1)21(11mm])21()21[(32341mm=m)21(3134∴2Sm+2=Sm+Sm+1故当q=1时,Sm,Sm+2,Sm+1不成等差数列;当q=21时,Sm,Sm+2,Sm+1成等差数列.例6已知数列{}na中,0122,3,6aaa,且对3n≥时有123(4)4(48)nnnnananana.(Ⅰ)设数列{}nb满足1,nnnbananN,证明数列1{2}nnbb为等比数列,并求数列{}nb的通项公式;(Ⅱ)记(1)21!nnn,求数列{}nna的前n项和nS(Ⅰ)证明:由条件,得112234[(1)]4[(2)]nnnnnnanaanaana,则1112(1)4[]4[(1)]nnnnnnanaanaana.即111244.1,0nnnbbbbb又,所以1122(2)nnnnbbbb,21220bb.所以1{2}nnbb是首项为2,公比为2的等比数列.2122bb,所以112122(2)2nnnnbbbb.两边同除以12n,可得111222nnnnbb.于是2nnb为以12首项,-12为公差的等差数列.所以11(1),2(1)2222nnnnbbnnb得.(Ⅱ)111122(2)nnnnnnananna,令2nnnca,则1nncnc.而111(1)21(1)21nccnncnn,.∴(1)212nnann.(1)212(1)!!2nnn