高效液相色谱法(HPLC)色谱法定义•色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。•色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。目录一、液相色谱分析法的发展二、液相色谱分析法的特点三、液相色谱仪四、液相色谱分析法的原理五、高效液相色谱法的主要类型及原理六、高效液相色谱分析法的应用七、分离数据的处理方法八、参考文献一、液相色谱分析法的发展•20世纪初:俄国植物学家茨维特提出经典液相色谱法。经典液相色谱法包括柱色谱、薄层色谱、纸色谱。•20世纪60年代末:随着色谱理论的发展、高效细微固定相的开发、高压恒流泵及高灵敏度检测器的应用,高效液相色谱法得到了突破性的发展。类比液柱色谱法和跑道赛跑二、液相色谱分析法的特点在技术上采用了高压泵、高效固定相和高灵敏度检测器,实现了分析速度快、分离效率高和操作自动化。兼具分离和分析功能,可以在线检测。•高效液相色谱法的突出特点:1)高压(150-350*105Pa)2)高速3)高效4)高灵敏度(高灵敏度的检测器:紫外10-9g,荧光10-11g)三、液相色谱仪(1)三、液相色谱仪(2)四、液相色谱分析法的原理•(一)高效液相色谱分析的流程1、由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。2、被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。3、废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。四、液相色谱分析法的原理•(二)高效液相色谱的分离过程••同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。流动相固定相640000031186279流动相固定相分配系数:物质在两相溶剂中分配平衡时的比例分配系数:1分配系数:33232321616161616168888操作过程图示四、液相色谱分析法的原理•不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。•所以分离最终效果则是热力学与动力学两方面的综合效益。五、高效液相色谱法的主要类型及原理1、液-液分配色谱2、液-固吸附色谱3、离子交换色谱4、离子对色谱5、离子色谱6、排阻色谱7、亲和色谱(AC)1、液-液分配色谱固定相与流动相均为液体(互不相溶);基本原理:组分在固定相和流动相上的分配;流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定液的极性(正相normalphase),反之,流动相的极性大于固定液的极性(反相reversephase)。正相与反相的出峰顺序相反;固定相:早期涂渍固定液,固定液流失,较少采用;化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的游离羟基上。C-18柱(反相柱)。2、液-固吸附色谱基本原理:各组分在固定相吸附剂上竞争性吸附与解吸固定相:固体吸附剂为,如硅胶、氧化铝等,较常使用的是5~10μm的硅胶吸附剂;流动相:各种不同极性的一元或多元溶剂。特点:适用于分离相对分子质量中等的油溶性试样,对具有官能团的化合物和异构体有较高选择性;缺点:非线形等温吸附,常引起峰的拖尾举例:苯乙胺类药物中重酒石酸去甲肾上腺素注射液的高效液相色谱测定法。色谱条件与系统适应性试验:十八烷基硅烷键合硅胶为填充剂;以0.14%更烷基磺酸钠溶液——甲醇(65:35),用磷酸调节PH值至3.0作为流动相;流速为每分钟1ml;检测波长为280nm。理论板数按重酒石酸去甲肾上腺素峰值计算应不低于3000。反相高效液相色谱法即指流动相的极性大于固定相极性的色谱方法。在本法中常采用化学键合相作为固定相,流动相采用水——甲醇或水——乙腈系统,在反相色谱中,极性强的组分在分离时先流出柱子,极性弱的组分后流出。因此适合于共存组分极性差异较大的样品分析。如高效液相色谱测定硫酸阿托品片的含量。举例:巴比妥类药物苯巴比妥、苯妥英和卡马西平均为临床上常用的抗癫痫药,其药物浓度与疗效和毒副反应密切相关。临床上常将三种药物同时使用,为提高疗效,减少毒副作用与个体差异,为超剂量中毒诊断、治疗与及时调整给药方案提供科学依据,临床上要进行血药浓度检测,而高效液相色谱法是最常用的方法之一。乙腈(jīng)又名甲基氰,分子式CH3CN,无色透明液体,密度小于水,约为0.79,能与水、乙醇等有机溶剂以任意比混溶,易燃,有毒性。3、离子交换色谱基本原理:组分在固定相上发生的反复离子交换反应;组分与离子交换树脂(固定相)之间亲和力的大小与离子半径、电荷、存在形式等有关。亲和力大,保留时间长;阳离子交换:R—SO3H+M+=R—SO3M+H+阴离子交换:R—NR4OH+X-=R—NR4X+OH-固定相:阴离子离子交换树脂或阳离子离子交换树脂;流动相:阴离子离子交换树脂作固定相,采用碱性水溶液;阳离子离子交换树脂作固定相,采用酸性水溶液;应用:离子及可离解的化合物、氨基酸、核酸等。4、离子对色谱基本原理:离子对色谱法是分离分析强极性有机酸和有机碱的极好方法。将一种(或多种)与溶质离子电荷相反的离子(对离子或反离子)加到流动相中使其与溶质离子结合形成疏水性离子对化合物,控制溶质离子的保留行为使其两相之间进行分配;阴离子分离:常采用烷基铵类,如氢氧化四丁基铵或氢氧化十六烷基三甲铵作为对离子;阳离子分离:常采用烷基磺酸类,如己烷磺酸钠作为对离子反相离子对色谱:非极性的疏水固定相(C-18柱),含有对离子Y+的甲醇-水或乙腈-水作为流动相,试样离子X-进入流动相后,生成疏水性离子对Y+X-后;在两相间分配。举例:维生素类药物的分析维生素具有脂溶性和水溶性两大类,由于其化学结构和性质相差较大,在含水介质中,又要受到光、空气、温度和pH的影响,使测定结果不理想。因而,提出用甲醇和水都能溶解的樟脑磺酸,作为离子对试剂,以二巯基丙烷磺酸钠0.125g/ml作为抗氧化剂,能使被测样品处于稳定的初始状态,结果更为可靠。反相离子对色谱是分离有机离子的有效方法,离子对试剂和其他添加剂的选用规则:1.样品中含有—COOH,—SO3H基团时,选用的离子对试剂应是带正电荷的有机铵盐,以增加样品阴离子在反响色偶中的保留值,选用的流动相一般是甲醇/水;2.除了加入离子对试剂,还要加入磷酸盐或者其他缓冲液,以控制流动相的酸度;3.样品中含有—NH2和—NH基团或其他阳离子时,选用的离子对试剂应是烷基磺酸盐或硫酸盐;4.样品同时含有—NH2,—COOH,—SO3H等不同性质的基团时则以上规则选用的离子对试剂和添加剂都合理。举例:芳酸及其酯类药物分析合成氨基水杨酸钠时,以间氨基酚为原料的生产路线较为普遍,因此在成品中可能含有未完全反应的间氨基酚。USP(24)采用离子对高效液相色谱法检测间氨基酚的限量。色谱条件:填充剂为十八烷基硅烷键合硅胶(C18,10um);色谱柱为250mmX46mm;流动相为磷酸二氢钠液(0.05mol/L)—磷酸氢二钠液(0.05mol/L)—甲醇(含氢氧化四丁基铵1.9g)(425:425:100);检测波长为254nm;流速为1.5ml/min。5、离子色谱离子色谱法是由离子交换色谱法派生出来的一种分离方法。由于离子交换色谱法在无机离子的分析和应用受到限制。例如,对于那些不能采用紫外检测器的被测离子,如采用电导检测器,由于被测离子的电导信号被强电解质流动相的高背景电导信号掩没而无法检测。为了解决这一问题,1975年Small等人提出一种能同时测定多种无机和有机离子的新技术。他们在离子交换分离柱后加一根抑制柱,抑制柱中装填与分离柱电荷相反的离子交换树脂。阳离子交换:R—H+Na+OH-=R—Na+H2OR—H+Na+Br-=R—Na+H+Br-阴离子交换:R—OH+Na+Br-=R—Br+Na+OH-使具有高背景电导的流动相转变成低背景电导的流动相,从而用电导检测器可直接检测各种离子的含量。这种色谱技术称为离子色谱。若样品为阳离子,用无机酸作流动相,抑制柱为高容量的强碱性阴离子交换剂。双柱型离子色谱装置图离子色谱连续抑制装置图6、空间排阻色谱原理:又称凝胶色谱法,主要用于较大分子的分离。与其他液相色谱方法原理不同,它不具有吸附、分配和离子交换作用机理,而是基于试样分子的尺寸和形状不同来实现分离的。小分子可以扩散到凝胶空隙,由其中通过,出峰最慢;中等分子只能通过部分凝胶空隙,中速通过;而大分子被排斥在外,出峰最快;溶剂分子小,故在最后出峰。固定相:凝胶(具有一定大小孔隙分布);可对相对分子质量在103-105范围内的化合物按质量分离7、亲和色谱(AC)原理:利用生物大分子和固定相表面存在的某种特异性亲和力,进行选择性分离先在载体表面键合上一种具有一般反应性能的所谓间隔臂(环氧、联胺等),再连接上配基(酶、抗原等)。这种固载化的配基将只能和具有亲和力特性吸附的生物大分子作用而被保留。改变淋洗液后洗脱8、薄层层析色谱是色谱法的一种,是快速分离和定性分析少量物质的一种很重要的实验技术,属固—液吸附色谱,它集柱色谱和纸色谱的优点。一方面适用于少量样品(几微克,甚至0.01微克)的分离;另一方面在制作薄层板时,把吸附层加厚加大,因此又可用来精制样品。此法特别适用于挥发性较小或较高温度易发生变化而不能用气相色谱分析的物质。是将吸附剂、载体或其他活性物质均匀涂铺在平面板(如玻璃板、塑料片、金属板等)上,形成薄层(常用厚度为0.25毫米左右)后,在此薄层上进行层析分离的方法。此法在杂环类药物的鉴别实验中有广泛应用。流动相选择该注意的几点问题1、尽量使用高纯度试剂做流动相,防止微量杂质长期积聚而损坏色谱柱;2、避免流动相与固定相发生相互作用而使柱效下降或损坏柱子;3、试样在流动相中应有适宜的溶解度,防止产生沉淀并在柱中沉积;4、流动相同时还应满足检测器的需求。液相色谱分离类型参考表样品相对分子量2000排阻色谱溶于水水为流动相不溶于水非水流动相具有亲和性亲和色谱小结:分离类型选择相对分子量2000不溶于水同系物分配色谱异构体吸附色谱溶于水不离解反相液液色谱可离解阴离子交换色谱阳离子交换色谱离子对色谱离子色谱六、高效液相色谱分析法的应用由于高效液相色谱具有高速、高效、高灵敏度等特点,近年来,国内外许多专家学者将高效液相色谱技术应用于天然产物(主要是中药)、农药和食品等行业中,取得了明显的效果。下面从实例出发,分析高效液相色谱分析方法在一些方面的应用:•1、高效制备液相色谱在天然产物分离中的应用天然产物(主要是中药)种类繁多,所含化学成分种类丰富,且有不少结构相似而含量高低不一,采用常规方法难以进行分离、精制。而HLPC的高灵敏性和高效性使其能有效地分离纯化某些天然产物中的有效成分。如表2列出的便是其中几种。已有文献对利用HLPC分离一些天然产物进行了报道,如黄酮类化合物(如下表所示)、苷类化合物、有机酸类化合物和生物碱类化合物等等。2、液相色谱技术在农药残留检测中的应用液相色谱法是一种经典的分析方法由于其具有操作简便分析速度快分离效能高灵敏度高以及应用范围广等特点目前农药残留物检测70%采用液相色谱法来进行使用液相色谱法多种农药可以一次进样得到完全的分离定性和定量再配置高性能的检测器使分析速度更快结果更可靠。在王志强、钱允辉、张琰论文中,试验测定稻米中吡虫