题目:超导的研究现状及其发展前景作者单位:陕西师范大学物理学与信息技术学院物理学一班作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049指导教师:郭芳侠交论文时间:20007-11-28超导的研究现状及其发展前景(陕西师范大学物理学一班第七组710062)摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景Superconductivityresearchpresentsituationandprospectsfordevelopment(ShaanxinormaluniversityphysicsoneclassSeventhgroup710062)Abstract:Thisarticlesimplyintroducedsomeandthesuperconductivitycorrelationconcept,thesuperconductivitymaterial,thesuperconductivitybriefhistory,thesuperconductivityresearchpresentsituationandtothesuperconductivityapplicationprospectforecast.Keyword:superconductors,superconductors,superconductor,superconductingmaterials,criticalparameters引言:某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导材料和常规导电材料的性能有很大的不同:零电阻性、完全抗磁性、约瑟夫森效应。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。超导技术被认为是21世纪最具有战略意义的高新技术.目前已被广泛用于超导电缆、超导变压器、超导电机、超导限流器、超导磁分离器、超导磁共振成像(MRI)、超导储能装置、超导磁悬浮列车等应用产品的研发,在许多领域取得了重大突破,具有十分广阔的市场前景超导简介:超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据基本临界参量有以下3个基本临界参量。临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示分类:超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为9.26K。电工中实际应用的主要是铌和铅(Pb,Tc=7.201K),已用于制造超导交流电力电缆、高Q值谐振腔等。合金材料:超导元素加入某些其他元素作合金成分,可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为10.8K,Hc为8.7特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的性能是,Tc=9.8K,Hc=12.8特。超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超导化合物还有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。超导的研究现状:1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。同年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。1991年3月日本住友电气工业公司展示了世界上第一个超导磁体。1991年10月日本原子能研究所和东芝公司共同研制成核聚变堆用的新型超导线圈。该线圈电流密度达到每平方毫米40安培,为过去的3倍多,达到世界最高水准。该研究所把这个线圈大型化后提供给国际热核聚变堆使用。这个新型磁体使用的超导材料是铌和锡的化合物。1992年1月27日第一艘由日本船舶和海洋基金会建造的超导船“大和”1号在日本神户下水试航。超导船由船上的超导磁体产生强磁场,船两侧的正负电极使水中电流从船的一侧向另一侧流动,磁场和电流之间的洛化兹力驱动船舶高速前进。这种高速超导船直到目前尚未进入实用化阶段,但实验证明,这种船舶有可能引发船舶工业爆发一次革命,就像当年富尔顿发明轮船最后取代了帆船那样。1992年一个以巨型超导磁体为主的超导超级对撞机特大型设备,于美国得克萨斯州建成并投入使用,耗资超过82亿美元。1996年改进高温超导电线的研究工作取得进展,制成了第一条地下输电电缆。欧洲电缆巨头皮雷利电缆公司、美国超导体公司和旧金山的电力研究所的工人,共同把6000米长的铋、锶、钙、铜和氧制成的线缠绕到一根保持超导温度的液氮的空管子上。2001年4月,340米铋系高温超导线在清华大学应用超导研究中心研制成功,并于年末建成第一条铋系高温线材生产线。2001年5月,北京有色金属研究总院采用自行设计研制的设备,成功地制备出国内最大面积的高质量双面钇钡铜氧超导薄膜,达到国际同类材料的先进水平2001年7月,香港科技大学宣布成功开发出全球最细的纳米超导线。目前,我国超导临界温度已提高到零下120摄氏度即153K左右。目前高温超导材料指的是:钇系(92K)、铋系(110K)、铊系(125K)和汞系(135K)以及2001年1月发现的新型超导体二硼化镁(39K)。其中最有实用前途的是铋系、钇系(YBCO)和二硼化镁(MgB2)。氧化物高温超导材料是以铜氧化物为组分的具有钙钦矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体,且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料,特别是在低温下的性能比传统超导体高得多。1.高温超导线带材高温超导体在强电方面众多的潜在应用(如:磁体、电缆、限流器、电机等)都需要研究和开发高性能的长线带材(千米量级)。所以,人们先后在YBCO、BSCCO及MgB2线材带化实用化方面做了大量的工作。目前已在Bi系Ag基复合带线材、铁基MgB2线材和柔性金属基Y系带材方面取得了很大进展。A.第一代Bi系高温超导线材BSCCO超导体晶粒的层状化结构使得人们能够利用机械变形和热处理来获得具有较好晶体取向的Bi系线带材,即把Bi(Pb)-Sr-Ca-Cu-O粉装入金属管(Ag或Ag合金)中进行加工和热处理的方法。经过十几年的发