1.数字推理是行政职业能力测验中数量关系部分的一种固定题型。2.数字推理题由题干和选项两部分组成,题干是一组按照一定规律排列的数列,但其中缺少一项。选项是分别以A、B、C、D标记的四个供选择的数字,要求应试者仔细观察题干各数字之间的关系,找出其中的规律,然后从四个供选择的选项中选出一个最合适、最合理的答案替代空缺项,使题干数列呈现恰当的排列规律。例题1.-210,123,456,789,()A.111112B.1122C.101112D.91011答案为B。相邻两个数字之间的差是一个常数333,所以括号内的数字应为789+333=1122。故选B。数字推理例题2.4,5,7,10,(),19A.14B.15C.16D.17答案为A。相邻两项之差又构成一个等差数列:1,2,3,4,5.……,数字推理例题4.1,3,3,5,7,9,13,15,(),()。A.1921B.1923C.2123D.2130答案为C。该数列的奇数项:1,3,7,13,()的相邻两项之差构成一个公差为2的等差数列,偶数项:3,5,9,15,()的相邻两项之差也构成一个公差为2的等差数列,例题3.8,8,12,24,60,()A.90B.120C.180D.240答案为C。数字推理例题6.1,1,2,2,3,4,3,5,()A.4B.5C.6D.7例题7.7,7,19,47,95,()A.142B.159C.167D.177答案为C。该数列是一个多级等差数列,逐级寻找相邻两项之差可找到规律。例题5.1,1,8,16,7,21,4,16,2,()A.10B.20C.30D.40数字推理例题8.2,2,2,4,32,()A.2048B.2236C.2360D.2480答案为A。该数列是一个多级等比数列,逐级寻找相邻两项之比可找到规律。例题10:9,6,3,3,(),3A.1B.0C.-1D.-2答案为B。第一项与第二项之差等于第三项例题9:0.5,2,1,2,2,4,()A.4B.6C.8D.10.5答案为A。第一项与第二项之积等于第三项.数字推理例题11:30,3,9,-2/3,()A.-1B.-5C.-13D.-29/2答案为D。第一项除以第二项再减1等于第三项.例题12:1,9,25,49,(),121A.68B.81C.96D.100答案为B。多级?平方?数字推理例题13:5,8,17,24,(),48A.35B.36C.37D.38答案为C。观察数列的数字本身,可以发现5=22+1,8=32-1,17=42+1,24=52-1,所以空缺项应为62+1=37。例题14:2,3,8,63,()A.3516B.3688C.3968D.3998答案为C。“前项2-1=后项”。例题15:-1,0,1,2,9,()A.25B.80C.729D.730答案为D。前项3+1=后项。数字推理例题16:1,3,15,()A.42B.64C.255D.256答案为C例题17:1,4,3,5,2,6,4,7,()A.1B.2C.3D.4答案为C。观察数列的数字可发现其两个奇数项相加的结果正好等于它们中间的那个偶数项,所以空缺的奇数项应填3。数字推理质数又叫素数,是只能被1与自身整除的大于1的自然数。如:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,……合数是除了1和质数以外的自然数。如4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30,32,33,34,35,36,……例题18:3,7,13,19,()A.27B.29C.31D.33答案为B。该数列的数字全部是质数,并且从小到大相间排列:3与7之间间隔质数5,7与13之间间隔质数11,13与19之间间隔质数17,则空缺项应为29,从而选B。非质数?非合数?数字推理例题19:2/3,0.8,6/7,(),10/11A.9/11B.8/9C.7/9D.7/10答案为B。将数列的第二项0.8写成4/5,则原数列的分子和分母都分别是公差为2的等差数列,所以空缺项应为8/9。分数数列基本看法:综合教程:P17-18例题2.34,2.35,2.36数字推理例题20:231,53,75()2B.2213C.237D.37答案为C。,A.有理化数字推理例题21:9,10,4,3,40,()A.80B.81C.120D.121答案为D。该数列前五项数字除以3所得余数依次分别为:0,1,1,0,1。观察四个选项,可知只有121除以3所得余数为1,故选D。看余数的规律整除特征?例题22:请求出第40个算式:13,22,11,23,12,21,13,...…,()A.13B.23C.31D.21数字推理数字分开写,要求要看清。例题23:2,3,6,8,8,4,()A.2B.3C.4D.5答案为A。例题24:1,8,8,6,4,(),8A.3B.4C.5D.6答案为B。例题25:86,72,63,54,45,()A.38B.37C.36D.35答案为C。72=86-8-6,63=72-7-2,54=63-6-3,45=54-5-4,所以空缺项应为45-4-5=36。数字推理对称型例题26:3,4,12,1/3,1,()A.1/4B.4/3C.3/4D.3将该数列分成两组:3,4,12,1/3,1,(),可以看出:12×1/3=4,4×1=4,则3乘以空缺项也应等于4,所以空缺项应为4/3,故选B。数字推理例题27:2,12,121,1121,11211,()A.11121B.11112C.111211D.112111答案为C。这是一道数字排序数列的变式题。该数列的规律是:以前一项为基准,在其前或后依次添上数字1,故选C。例题28:21648,2165,217,22,()A.4B.3C.2D.1答案为C。这是一道数字排序数列的变式题。该数列的规律是:前项除以10,所得结果四舍五入后取整得后项。此类题目可从题干前后项数字之间的变化看出规律。数字变形数字推理例题29:1,3,4,(),35A.13B.14C.16D.21将原数列的数字依次写成汉字为:一、三、四、()、三十五。观察这四个汉字,可知它们的笔画数为:1,3,5,(),9,需要填入一个汉字笔画数为七画的数字,再观察四个选项,只有14的笔画数为七画,从而选B。汉字笔画数列数字推理-3371129-12?454A.1B.2C.3D.-2答案为C。每个图形中对角线上的数字和相等。从而选C。42061440113159524243519?A.78B.68C.75D.64答案为A。注意到40=4+14+6+20-4,52=11+9+5+31-4,则?=4+19+35+24-4=78。图形数列例题31:例题30:数字推理方框内数字规律为:方框内上、下、左、右四个数字之和都是122。即20+55+34+13=34+13+?+27=?+27+6+41=6+41+20+55=122,可得?=48。注意到26=[(7+8)-2]×2,10=[(3+6)-4]×2,则?=[(9+2)-3]×2=16。例题33:例题32:数字推理()6.40.96.56.81.66.2?7.28答案为A这是一道九宫格题。图形中数字的排列规律为:“第三列”减去“第一列”再加上“第二列”等于1,即:6.5-6.4+0.9=1,6.2-6.8+1.6=1,所以8-?+7.2=1,即?=14.2。A.14.2B.16.4C.18.6D.15例题34:数字推理例题35:位于表中的第10行、第11列的数字是()。-11357......02468......13579......246810......357911..........................................A.24B.26C.28D.30数字推理等差数列项数公式:n1aa(n1)d第11列的第1个数字是:(1)(111)219第11列的第10行的数字是:19(101)128数学运算题是数量关系中的第二种题型。数学运算考查应试者基本的数学运算能力,试题难易程度差异较大,出题方式一般有两种,或是呈现一道算式,或是呈现一段表述数量关系的文字(即应用题),要求应试者准确、快速地给出(选出)答案。例题1:9+99+999+9999的值是()。A.3616B.2546C.1216D.1116答案:D原式=(9-3)+(99+1)+(999+1)+(9999+1)=6+100+1000+10000=1116凑整法数学运算数学运算例题2:456×2×125×25×5×32的值是()。A.456000B.43200000000C.4.56×108D.9.12×108原式=456×2×125×25×5×4×8=456×(2×5)×(125×8)×(25×4)=456×10×1000×100=4.56×108凑整法例题3:1!+2!+3!+4!+……+99!+100!的个位数字是()。A.0B.1C.2D.3数学运算例题4:816×225-816×86-76×408的值是()。A.87906B.82416C.96780D.113783原式=816×225-816×86-38×816=816×(225-86-38)=816×101=81600+816=82416提取公因子化简数学运算例题5:19881989+19891988+20092010+20102009的数值是()。A.79898989B.79969948C.79967996D.81996963答案为C。利用尾数相加:9+8+0+9=26,即个位数是6。观察四个选项,可知只有C的尾数为6,从而选C。估算尾数数学运算简便计算乘方的尾数时要注意两点:(1)底数只留个位;(2)原指数的末两位数除以4的余数是新的指数(余数是零时则看成是4)。例题6:的个位数字是()。A.2B.3C.5D.7答案为A。2009200510310944444444444444444444444442412343542468A.5684B.5664C.5674D6822342122232.42123415654635456644444(1)例题(2)(2)(27:已知,那么()。)(),nnnmnmababaaan提示:()数学运算例题8:2002×20032003-2003×20022002的数值是()。A.-60B.0C.60D.80例题9:292+922的值是()。A.8905B.9115C.9305D.9335原式=(29+1)(29-1)+12+(92-2)(92+2)+22=30×28+1+90×94+4=30×28+30×3×94+5=30(28+3×94)+5=30×310+5=9305利用代数公式化简例题10:20×20-19×19+18×18-17×17+......+2×2-1×1的数值是()。A.210B.240C.273D.284原式=(20×20-19×19)+(18×18-17×17)+......+(2×2-1×1)=(20+19)×(20-19)+(18+17)×(18-17)+......+(2+1)×(2-1)=20+19+18+17+......+2+1=210利用代数公式化简数学运算例题11:1999+2000+2003+2000+1997+2001的值是()。A.10000B.19994C.12000D.125000答案为C。基准数法关于加法的基准数法,作为“基准”的数叫做基准数,各数与基准数的差的和叫做累计差。总和数=基准数×加数的个数+累计差平均数=基准数+累计差÷加数的个数数学运算例题12:1111142567290110的数值是()。A.16B.566C.785D.11128裂项法111)1(1nnnn)11(1)(1knnkknn数学