17直线与圆的位置关系课件(省级获奖)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

直线和圆的位置关系点和圆的位置关系有几种?点到圆心的距离为d,圆的半径为r,则:点在圆外dr;点在圆上d=r;点在圆内dr.ABC位置关系数形结合:数量关系同学们,在我们的生活中到处都蕴含着数学知识,下面老师请同学们欣赏美丽的海上日出从海上日出这种自然现象中可以抽象出哪些基本的几何图形呢?今天老师和同学们一起来探究请同学们利用手中的工具再现海上日出的整个情景。在再现过程中,你认为直线与圆的位置关系可以分为哪几类?你分类的依据是什么?(地平线)a(地平线)●O●O●O(2)直线和圆有唯一个公共点,叫做直线和圆相切,这条直线叫圆的切线,这个公共点叫切点。(1)直线和圆有两个公共点,叫做直线和圆相交,这条直线叫圆的割线,这两个公共点叫交点。(3)直线和圆没有公共点时,叫做直线和圆相离。一、直线与圆的位置关系(用公共点的个数来区分)lOlAOlO相交相切相离上述变化过程中,除了公共点的个数发生了变化,还有什么量在改变?你能否用数量关系来判别直线与圆的位置关系?2、连结直线外一点与直线所有点的线段中,最短的是______?1.直线外一点到这条直线的垂线段的长度叫点到直线的距离。垂线段a.AD相关知识点回忆直线和圆相交dr直线和圆相切d=r直线和圆相离drrdrd∟rd数形结合:位置关系数量关系二、直线和圆的位置关系(用圆心o到直线l的距离d与圆的半径r的关系来区分)总结:判定直线与圆的位置关系的方法有____种:(1)根据定义,由________________的个数来判断;(2)根据性质,由_________________的关系来判断。在实际应用中,常采用第二种方法判定。两直线与圆的公共点圆心到直线的距离d与半径r观察太阳落山的照片,在太阳落山的过程中,太阳与地平线(直线a)经历了哪些位置关系的变化?a(地平线)小试牛刀1、已知圆的直径为13cm,设直线和圆心的距离为d:3)若d=8cm,则直线与圆______,直线与圆有____个公共点.2)若d=6.5cm,则直线与圆______,直线与圆有____个公共点.1)若d=4.5cm,则直线与圆,直线与圆有____个公共点.3)若AB和⊙O相交,则.2、已知⊙O的半径为5cm,圆心O与直线AB的距离为d,根据条件填写d的范围:1)若AB和⊙O相离,则;2)若AB和⊙O相切,则;相交相切相离d5cmd=5cmd5cm小试牛刀0cm≤2103、如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是cm。CBA4、直线L和⊙O有公共点,则直线L与⊙O().A、相离;B、相切;C、相交;D、相切或相交。12/5D例:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm(3)r=3cm.BCA43分析:要了解AB与⊙C的位置关系,只要知道圆心C到AB的距离d与r的关系.已知r,只需求出C到AB的距离d。Dd解:过C作CD⊥AB,垂足为D在△ABC中,AB=22BCAC22435根据三角形的面积公式有BCACABCD2121∴)(4.2543cmABBCACCD即圆心C到AB的距离d=2.4cm所以(1)当r=2cm时,有dr,因此⊙C和AB相离。Dd(2)当r=2.4cm时,有d=r,因此⊙C和AB相切。(3)当r=3cm时,有dr,因此,⊙C和AB相交。DDdd1、已知:圆的直径为13cm,如果直线和圆心的距离为以下值时,直线和圆有几个公共点?为什么?(1)4.5cmA0个;B1个;C2个;答案:C(2)6.5cm答案:B(3)8cm答案:AA0个;B1个;C2个;A0个;B1个;C2个;自我检验2、如图,已知∠BAC=30度,M为AC上一点,且AM=5cm,以M为圆心、r为半径的圆与直线AB有怎样的位置关系?为什么?(1)r=2cm(2)r=4cm(3)r=2.5cmDA.(-3,-4)Oxy已知⊙A的直径为6,点A的坐标为(-3,-4),则x轴与⊙A的位置关系是_____,y轴与⊙A的位置关系是_____。BC43相离相切-1-1拓展.(-3,-4)OxyBC43-1-1A若⊙A要与x轴相切,则⊙A该向上移动多少个单位?若⊙A要与x轴相交呢?思考已知⊙O的半径r=7cm,直线l1//l2,且l1与⊙O相切,圆心O到l2的距离为9cm.求l1与l2的距离m.o。l1l2ABCl2观察讨论D在Rt△ABC中,∠C=90°,AC=5cm,BC=12cm,以C为圆心,r为半径作圆。①当r满足时,直线AB与⊙C相离。②当r满足时,直线AB与⊙C相切。③当r满足时,直线AB与⊙C相交。12BCA130﹤r﹤1360r=1360r﹥1360④当r满足时,线段AB与⊙C只有一个公共点。或5﹤r≤12r=13605CD=cm1360小结:1、直线与圆的位置关系:0dr1d=r切点切线2dr交点割线.Oldr┐┐.oldr.Old┐r图形直线与圆的位置关系公共点的个数圆心到直线的距离d与半径r的关系公共点的名称直线名称.ACB..相离相切相交2、判定直线与圆的位置关系的方法有____种:(1)根据定义,由__________________的个数来判断;(2)根据性质,由___________________________________的关系来判断。在实际应用中,常采用第二种方法判定。两直线与圆的公共点圆心到直线的距离d与半径r知识像一艘船让它载着我们驶向理想的……

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功