云师堂,高考数学,2017一轮复习第五章第4讲

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第4讲合情推理与演绎推理第六章不等式、推理与证明栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明1.推理(1)定义:是根据一个或几个已知的________来确定一个新的________的思维过程.(2)分类:推理______________________________判断判断合情推理演绎推理栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明2.合情推理归纳推理类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的______________________的推理,或者由个别事实概括出___________的推理由两类对象具有某些类似特征和其中一类对象的________________,推出另一类对象也具有这些特征的推理特点由________到________、由________到________的推理由______到______的推理全部对象都具有这些特征一般结论某些已知特征部分整体个别一般特殊特殊栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明3.演绎推理(1)定义:从________________出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由________到________的推理.(3)模式:三段论①大前提:已知的________;②小前提:所研究的特殊情况;③结论:根据一般原理,对________做出的判断.一般性的原理一般特殊一般原理特殊情况栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明1.辨明两个易误点(1)演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.(2)合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明2.把握合情推理与演绎推理的三个特点(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明1.数列2,5,11,20,x,47,…中的x等于()A.28B.32C.33D.27B解析:由5-2=3,11-5=6,20-11=9,则x-20=12,因此x=32.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明2.推理“①矩形是平行四边形,②三角形不是平行四边形,③三角形不是矩形”中的小前提是()A.①B.②C.③D.①和②B解析:由演绎推理三段论可知,①是大前提,②是小前提,③是结论.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明3.(选修2­2P77练习T1改编)已知数列{an}中,a1=1,n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是()A.an=3n-1B.an=4n-3C.an=n2D.an=3n-1C栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明解析:由a1=1,an=an-1+2n-1,则a2=a1+2×2-1=4;a3=a2+2×3-1=9;a4=a3+2×4-1=16;所以an=n2.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8解析:V1V2=13S1h113S2h2=S1S2·h1h2=14×12=18.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明考点一归纳推理(高频考点)归纳推理是每年高考的常考内容,题型多为选择题或填空题,难度稍大,属中高档题.高考对归纳推理的考查常有以下三个命题角度:(1)数值的归纳;(2)代数式的归纳;(3)图形的归纳.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明(1)(2015·高考陕西卷)观察下列等式:1-12=12,1-12+13-14=13+14,1-12+13-14+15-16=14+15+16,…,据此规律,第n个等式可为_________________________________________________.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明(2)(2016·青岛模拟)某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n级分形图.n级分形图中共有____________________条线段.3×2n-3(n∈N*)栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明[解析](1)等式的左边的通项为12n-1-12n,前n项和为1-12+13-14+…+12n-1-12n;右边的每个式子的第一项为1n+1,共有n项,故为1n+1+1n+2+…+1n+n.(2)分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n级分形图中的线段条数an=3×2n-3(n∈N*).栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明常见的归纳推理及求解策略(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.解决的关键是抓住相邻图形之间的关系.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明1.(1)已知f(x)=x1+x,x≥0,若f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N+,则f2014(x)的表达式为___________________________.f2014(x)=x1+2014x栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明(2)(2016·山东省滕州第二中学模拟)在△ABC中,不等式1A+1B+1C≥9π成立;在凸四边形ABCD中,不等式1A+1B+1C+1D≥162π成立;在凸五边形ABCDE中,不等式1A+1B+1C+1D+1E≥253π成立,…,依此类推,在凸n边形A1A2…An中,不等式1A1+1A2+…+1An≥__________________________成立.n2(n-2)π(n∈N*,n≥3)栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明解析:(1)f1(x)=x1+x,f2(x)=x1+x1+x1+x=x1+2x,f3(x)=x1+2x1+x1+2x=x1+3x,…,由归纳推理得f2014(x)=x1+2014x.(2)因为1A+1B+1C≥9π=32π,1A+1B+1C+1D≥162π=422π,1A+1B+1C+1D+1E≥253π=523π,…,所以1A1+1A2+…+1An≥n2(n-2)π(n∈N*,n≥3).栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明考点二类比推理(2016·西安模拟)设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=2Sa+b+c;类比这个结论可知:四面体S­ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体S­ABC的体积为V,则R=()A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S4C栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明[解析]设四面体的内切球球心为O,那么由V=VO­ABC+VO­SAB+VO­SAC+VO­SBC,即V=13S1R+13S2R+13S3R+13S4R,可得R=3VS1+S2+S3+S4.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明类比推理的分类(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明2.(2016·杭州模拟)已知命题:“若数列{an}是等比数列,且an>0,则数列bn=na1a2…an(n∈N*)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.解:类比等比数列的性质,可以得到等差数列的一个性质是:若数列{an}是等差数列,则数列bn=a1+a2+…+ann(n∈N*)也是等差数列.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明证明如下:设等差数列{an}的公差为d,则bn=a1+a2+…+ann=na1+n(n-1)d2n=a1+d2(n-1),所以数列{bn}是以a1为首项,d2为公差的等差数列.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明考点三演绎推理数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n∈N*).证明:(1)数列Snn是等比数列;(2)Sn+1=4an.栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明[证明](1)因为an+1=Sn+1-Sn,an+1=n+2nSn,所以(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn.故Sn+1n+1=2·Snn,(小前提)故Snn是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义)栏目导引知能训练轻松闯关名师讲坛素养提示典例剖析考点突破教材回顾夯实基础第六章不等式、推理与证明(2)由(1)可知Sn+1n+1=4·Sn-1n-1(n≥2),所以Sn+1=4(n+1)·Sn-1n-1=4·n-1+2n-1·Sn-1=4an(n≥2).(大前提)又因为a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提)所以对于任意正整数n,都有Sn+1=4an.(结论)栏目导引知能训练轻松闯关名师讲坛素养提示

1 / 39
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功