A DIRECTIONAL ERROR ESTIMATOR FOR ADAPTIVE FINITE

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

COMPUTATIONALMECHANICSNewTrendsandApplicationsS.Idelsohn,E.O~nateandE.Dvorkin(Eds.)cCIMNE,Barcelona,Spain1998ADIRECTIONALERRORESTIMATORFORADAPTIVEFINITEELEMENTANALYSISLaviniaBorges,RaulFeijooy,ClaudioPadrayyandNestorZouainCOPPE/EE-MechanicalEngineeringDepartmentFederalUniversityofRiodeJaneiroCx.Postal68503RiodeJaneiro,RJ,BrasilCep:21945.970e-mail:lavinia@serv.com.ufrj.brandnestor@serv.com.ufrj.bryLaboratrioNacionaldeComputac~aocient ca(LNCC/CNPq)LauroMuller455-Botafogo,RiodeJaneiro-RJ-BrasilCep:22290.160E-mail:feij@alpha.lncc.brwebpage:~tacsomyyInstitutoBalseiro(CAB)CentroAtomicodeBariloche,8400,Bariloche,Argentina.E-mail:padra@cab.cnea.edu.arKeywords:FiniteElements,MeshGeneration,Errorestimator,AdaptiveAnalysis,LimitAnalysisAbstract.Wepresentanerrorestimatorbasedon rst-andsecond-orderderivativesrecoveryfor niteelementadaptiveanalysis.At rst,webrieflydiscusstheabstractframeworkoftheadoptederrorestimationtechniques.Somepossibilitiesofderivativesrecoveryareconsidered,includingtheproposalofadirectionalerrorestimator.Usingthedirectionalerrorestimatorproposed,anadaptive niteelementanalysisisperformedwhichgivesanadaptedmeshwheretheestimatederrorisuniformlydistributedoverthedomain.Theadvantagesofadaptingmeshesarewellknown,butweplaceparticularemphasisontheanisotropicmeshadaptationprocessgeneratedbythedirectionalerrorestimator.Thismeshadaptationprocessgivesimprovedresultsinlocalizingregionsofrapidorabruptvariationsofthevariables,whoselocationisnotknownapriori.Weapplytheaboveabstractformulationtoanalyzethebehaviouroftherecoverytechniqueandtheproposedadaptiveprocessforsomeparticularfunctions.Finally,weapplytheproceduretosome niteelementmodelsforlimitanalysis.1LaviniaBorges,RaulFeijoo,ClaudioPadraandNestorZouain1INTRODUCTIONThemainobjectiveofthispaperittopresentanerrorestimatorbasedon rst-andsecond-orderderivativesrecoveryfor niteelementadaptiveanalysis,includingtheproposalofadirectionalerrorestimator.Usingtheproposeddirectionalerrorestimator,weperformanadaptive niteelementanalysis,whichgivesanadaptedmeshwheretheestimatederrorisuniformlydistributedoverthedomain.Theadvantagesofadaptingmeshesarewellknown,butweplaceparticularemphasisontheanisotropicmeshadaptationprocess,generatedbyadirectionalerrorestimatorbasedontherecoveringofsecondderivativesofthe niteelementsolution.Thegoalofthisapproachistoachieveamesh-adaptivestrategyaccountingformeshsizere nement,aswellasrede nitionoftheorientedelementstretching.Thisway,alongtheadaptationprocess,themeshturnsalignedwiththedirectionofmaximumcurvatureofthefunction.Thismeshadaptationprocessgivesimprovedresultsinlocalizingregionsofrapidorabruptvariationsofthevariables,whoselocationisnotknownapriori1;2;3;4.So,wecanobtainanaccuraterepresentationofshocks,boundarylayers,wakesandotherdiscontinuities.Inthelightoftheabstracttheory,itispresentedanadaptivemesh-re nementpro-cessforsomeclassicalexamplesinlimitanalysis.AsimilarapproachisadoptedinapplicationsofComputacionalFluidDynamicsproblemsbyReginaC.deAlmeidaetal.inthepaper\AdaptiveFiniteelementComputacionalFluidDynamicsusinganAnisotropicErrorEstimator,alsopresentedinthisevent.Limitanalysisdealswiththedirectcomputationoftheloadproducingplasticcollapseofabody-aphenomenonwhere,underconstantstresses,kinematicallyadmissibleplasticstrainratestakeplace.Localizedplasticdeformationsorslipbandsarepresentinmostcollapsesituations(seeforexampleBorgesetal.18andpaperstherein).Accuracyinthenumericalsolutionoflimitanalysisisseriouslya ectedbylocalsingularitiesarisingfromtheselocalizedplasticdeformations.Onepossibleapproachinordertoovercomethisproblemistoaddmoregrid-pointswherethesolutionpresentsthosesingularities.So,itbecomesnecessarynotonlytoidentifytheseregions,butalsotoobtainagoodequilibriumbetweenthere nedandunre nedregionsforanoptimaloverallaccuracy5.Inlimitanalysis,anapriorierrorestimate,asprovidedbythestandarderroranalysisinthe niteelementmethod,isofteninsucienttoassurereliableestimatesofthecomputedsolutionaccuracy.Thisisduetothefactthatitonlyyieldsinformationontheasymptoticerrorbehaviourandrequiresregularityconditionsofthesolution,whicharenotsatis edinthepresenceofsingularitiessuchastheabovementionedones.Thosefactsdisclosetheneedofanestimatorwhichcanaposterioribeextractedfromthecomputednumericalsolution.Wediscussinthispaper, rstly,theabstractframeworkoftheadoptederrorestima-tiontechniques,byconsideringthederivativesrecoveryandtheproposalofadirectionalerrorestimator.Togetherwithlimitanalysisapplications,wealsoselectsomeadaptivemesh-re nementsolutionsforinterpolationproblemsinordertoshowthatthepro-2LaviniaBorges,RaulFeijoo,ClaudioPadraandNestorZouainposedadaptivestrategyusingouranisotropicerrorestimatorrecoversoptimaland/orsuperconvergencerates.2ESTIMATORSBASEDONDERIVATIVESRECOVERYInrecoverybasederrorestimationmethodsthegradientsand/orHessiansofsolu-tions,obtainedonagivenmesh,aresmoothedandafterthatthesmoothedsolutionisusedinerrorestimation.Itiswellknownthatthederivativesoftheuhfunctionissuperconvergentinsomeinteriorpointsofthemes

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功