A level set approach for computing discontinuous s

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

MATHEMATICSOFCOMPUTATIONVolume72,Number241,Pages159{181S0025-5718(02)01438-2ArticleelectronicallypublishedonAugust13,2002ALEVELSETAPPROACHFORCOMPUTINGDISCONTINUOUSSOLUTIONSOFHAMILTON-JACOBIEQUATIONSYEN-HSIRICHARDTSAI,YOSHIKAZUGIGA,ANDSTANLEYOSHERAbstract.Weintroducetwotypesof nitedi erencemethodstocomputetheL-solutionandtheproperviscositysolutionrecentlyproposedbythesecondauthorforsemi-discontinuoussolutionstoaclassofHamilton-Jacobiequa-tions.Byregardingthegraphofthesolutionasthezerolevelcurveofacontinuousfunctioninonedimensionhigher,wecantreatthecorrespondinglevelsetequationusingtheviscositytheoryintroducedbyCrandallandLions.However,weneedtopayspecialattentionbothanalyticallyandnumericallytopreventthezerolevelcurvefromoverturningsothatitcanbeinterpretedasthegraphofafunction.WedemonstrateourLax-Friedrichstypenumeri-calmethodsforcomputingtheL-solutionusingitsoriginallevelsetformula-tion.Inaddition,wecoupleournumericalmethodswithasingulardi usivetermwhichisessentialtocomputingsolutionstoamoregeneralclassofHJequationsthatincludesconservationlaws.Withthissingularviscosity,ournumericalmethodsdonotrequirethedivergencestructureofequationsanddoapplytomoregeneralequationsdevelopingshocksotherthanconservationlaws.ThesenumericalmethodsaregeneralizedtohigherorderaccuracyusingweightedENOlocalLax-FriedrichsmethodsasdevelopedrecentlybyJiangandPeng.Weverifythatournumericalsolutionsapproximatethepropervis-cositysolutionsobtainedbythesecondauthorinarecentHokkaidoUniversitypreprint.Finally,sincethesolutionofscalarconservationlawequationscanbeconstructedusingexistingnumericaltechniques,weuseittoverifythatournumericalsolutionapproximatestheentropysolution.1.IntroductionNonlinearHamilton-Jacobiequationsariseinmanydi erent elds,includingmechanics,calculusofvariations,geometricoptics,controltheory,anddi erentialgames.Becauseofthenonlinearity,theCauchyproblemsusuallyhavenonclassicalsolutionsduetothecrossingofcharacteristiccurves.Forscalarequationsofconservationlawtype,thereisawellknowntheoryre-gardingtheexistenceanduniquenessofaweaksolution,calledanentropysolution,usingthespecialintegralstructureoftheequation[23].Advancednumericalmeth-ods,e.g.,[15],[16],[30],[34],havebeendevelopedandwidelyusedtocomputeapproximationsthatconvergetothecorrectentropysolutions.ReceivedbytheeditorMarch7,2001.2000MathematicsSubjectClassi cation.Primary65Mxx,35Lxx;Secondary70H20.Keywordsandphrases.Hamilton-Jacobiequations,singulardi usion,levelsets.The rstandthethirdauthorsaresupportedbyONRN00014-97-1-0027,DARPA/NSFVIPgrantNSFDMS9615854andARODAAG55-98-1-0323.c2002AmericanMathematicalSociety159160Y.-H.R.TSAI,Y.GIGA,ANDS.OSHERNevertheless,thisnotionofweaksolutioncannotbeappliedtomanyfullynonlin-earequations,e.g.,theeikonalequationut+jruj=0:In1983,CrandallandLions[7] rstintroducedthenotionofviscositysolutionforthistypeofequations,basedonamaximumprincipleandtheorder-preservingpropertyofparabolicequations.Ingeneral,foranygivenHamilton-Jacobiequationoftheformut+H(x;t;u;Du)=0;whereHisacontinuousfunctionfromR+RRn;nondecreasinginu;andisanopensubsetofRn;thereexistsauniqueuniformlycontinuousviscositysolutioniftheinitialdataisboundedanduniformlycontinuous.1Thecontinuityofthesolutioncanbeunderstoodintuitivelyfromthe1Dfactthat\HJequationsaretheconservationlawsintegratedonce.Theviscositysolutionissometimesunderstoodasthelimitofthesolutionstotheequationwithvanishingviscosity.Correspondingly,CrandallandLionsin[6]provedtheconvergenceoftwoap-proximationstotheviscositysolutionofequationswhoseHamiltoniansonlydependonDu.ThiswasgeneralizedbySouganidistoequationswithvariablecoecientsin[31].Manysophisticatednumericalmethodshavesincebeendeveloped[21],[24],[26],[27].However,thereareproblemsincontroltheoryanddi erentialgameswhichde-manddiscontinuoussolutions.Theoriginalviscositytheorydoesnotapplytodis-continuousinitialdata.Thenotionofsemicontinuousviscositysolutionhasbeenintroduced rstbyIshii[18,20]usinganextensionofPerron'smethod.BecauseofthenonuniquenessinIshii'sresult,othernotionsofsemicontinuoussolutionswereproposedbyvariousauthors[2],[4],withdi erentkindsofadditionalpropertiesimposedontheHamiltonian.SomeofthesenotionsneedseriousrestrictionsontheHamiltonians,andothersareimplicitinthesensethattheprocessesoftak-ingsupremumandin mumareinvolved.Asaconsequence,onecannotdevelopnumericalmethodstoconstructapproximations.Foranoverviewoftheviscositytheoryandapplications,see[3]and[1].Finally,fortheclassofequationswithHamiltoniansH(x;u;Du)nondecreasinginu,M.-H.Satoandthesecondauthor[14]introducedanewnotionofsemicontin-uoussolution.Thisnotionofsolutionisde nedbytheevolutionofthezerolevelcurveoftheauxiliarylevelsetequationwhichembedstheoriginalHJequation.ItisthuscalledtheL-solution.Inthisarticle,wewilldeviseaLax-FriedrichstypeschemetocomputeapproximationoftheL-solutioninitsoriginalformulation(i.e.,levelset).WewillalsoshowthatwithsuitableCFLcondition,ourschemeskeepthediscreteversionofanimportantpropertyofthisclassofHJequations.WhentheHamiltonianH(t;x;u;Du)isnotnondecreasinginu,thesolutionma

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功