1第20题函数零点的个数问题I.题源探究·黄金母题【例1】求函数()ln26fxxx的零点的个数.【答案】1.【解析】fx的定义域为0,.,,2ln24603ln3660ff拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。由零点存在性定理知fx有零点.又120,fxfxx在0,上是单调递增函数,fx只有一个零点.精彩解读【试题来源】人教版A版必修1第88页例1.【母题评析】本题考查了零点存在性定理、函数零点个数的判断.【思路方法】判断函数是否存在零点可用零点存在性定理或利用数形结合法.而要判断函数有几个零点,还需要借助函数的单调性.II.考场精彩·真题回放【例2】【2017高考江苏卷第14题】设()fx是定义在R且周期为1的函数,在区间[0,1)上,2,,(),,xxDfxxxD其中集合1,*nDxxnnN,则方程()lg0fxx的解的个数是.【答案】8【解析】由于()[0,1)fx,则需考虑110x的情况,在此范围内,xQ且xZ时,设*,,,2qxpqppN,且,pq互质.若lgxQ,则由lg(0,1)x,可设*lg,,,2nxmnmmN,且,mn互质.因此10nmqp,则10()nmqp,此时左边为整数,右边非整数,矛盾,因此lgxQ.因此lgx不可能与每个周期内xD对应的部分相等,只需考虑lgx与每个周期xD的部分的交点,画出函数图象,图中交点除1,0外其它交点横坐标均为无理数,属于每个周期xD的部分,且1x处11lg1ln10ln10xx,则在1x附近仅有一个交点,一次方程解的个数为8.【命题意图】本题主要考查考查了零点存在性定理、函数零点个数的判断.本题能较好的考查考生分析问题解决问题的能力.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记、理解与应用.【难点中心】解答此类问题,关键在于灵活选择方法,如直接求解,或数形结合转化为两个函数图象的交点个数问题,或借助于导数研究函数的单调性,得到函数的零点个数.2【例3】【2016高考新课标I改编】函数22xfxxe在2,2有个零点.【答案】D.【解析】函数22xfxxe|在2,2上是偶函数,其图象关于y轴对称,故先考虑其在0,2上有几个零点.200,10,(2)80,fffefx在0,2上有零点.设4xgxfxxe.00,10,20,ggggx在0,2上有零点.又由0gx,可得40xe,设其解为1x,易知11,2x且10,gxgx在0,2上有唯一零点,设为0x且00,1x.从而当00xx时,0gx,即0fx;当02xx时,0gx,即0fx,故0(0,)xx时,()fx为单调递减函数;当0(,2)xx时,()fx为单调递增函数.又000,10,()0,fffxfx在0,2上有唯一零点.由函数图象的对称性可知fx在0,2上有两个零点.【例4】【2015年高考江苏卷】已知函数lnfxx,20,0142,1xgxxx,则方程1fxgx实根的个数为__________.【答案】4.【解析】方程等价于1fxgx,即1fxgx或1fxgx共多少个根,【命题意图】本题主要考查考查了零点存在性定理、函数零点个数的判断.本题能较好的考查考生分析问题解决问题的能力.【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较大.【难点中心】一些对数型方程不能直接求出其零点,常通过平移、对称变换转化为相应3221,0111,127,2xygxxxxx,数形结合可得:fx与1ygx有两个交点;221,0113,125,2xygxxxxx,同理可得fx与1ygx有两个交点,所以共计4个.的函数图像问题,利用数形结合法将方程根的个数转化为对应函数零点个数,而函数零点个数的判断通常转化为两函数图像交点的个数.这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且要明确其变化速度快慢.III.理论基础·解题原理1.零点的定义:一般地,对于函数yfxxD,我们把方程0fx的实数根x称为函数yfxxD的零点.2.函数零点存在性定理:设函数fx在闭区间,ab上连续,且0fafb,那么在开区间,ab内至少有函数fx的一个零点,即至少有一点0,xab,使得00fx.(1)fx在,ab上连续是使用零点存在性定理判定零点的前提;(2)零点存在性定理中的几个“不一定”(假设fx连续)①若0fafb,则fx的零点不一定只有一个,可以有多个;②若0fafb,那么fx在,ab不一定有零点;③若fx在,ab有零点,则fafb不一定必须异号.3.若fx在,ab上是单调函数且连续,则0fafbfx在,ab的零点唯一.4.函数的零点、方程的根、两图像交点之间的联系:设函数为yfx,则fx的零点即为满足方程0fx的根,若fxgxhx,则方程可转变为gxhx,即方程的根在坐标系中为,gxhx交点的横坐标,其范围和个数可从图像中得到.由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化.5.函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理;作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内;缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关.4(2)方程的根:工具:方程的等价变形;作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数;缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数.(3)两函数的交点:工具:数形结合;作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围;缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.IV.题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,一般难度较小.若涉及的函数为分段函数,则难度加大.【技能方法】1.零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内.例如:对于方程ln0xx,无法直接求出根,构造函数lnfxxx,由110,02ff即可判定其零点必在1,12中.2.判断函数在某个区间上是否存在零点的方法(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上.(2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x轴在给定区间上是否有交点来判断.3.断函数零点个数的常见方法(1)直接法:解方程0fx,方程有几个解,函数fx就有几个零点;(2)图象法:画出函数fx的图象,函数fx的图象与x轴的交点个数即为函数fx的零点个数;(3)将函数fx拆成两个常见函数gx和hx的差,从而00fxgxhxgxhx,则函数fx的零点个数即为函数ygx与函数yhx的图象的交点个数;(4)二次函数20fxaxbxca的零点问题主要从三个方面考虑:5①判别式确定零点是否存在;②对称轴的位置控制零点的位置;③端点值的符号确定零点的个数.【易错指导】对函数零点存在的判断需要注意以下两点:(1)函数fx在,ab上连续;(2)满足0fafb.上述方法只能求变号零点,对于非变号零点不能用上述方法求解.另外需要注意的是:(1)若函数fx的图象在0xx与x轴相切,则零点0x通常称为不变号零点;(2)函数的零点不是点,它是函yfx数与x轴的交点的横坐标,是方程0fx的根.V.举一反三·触类旁通【例1】【2018云南昆明一中高三一模】若函数fxx,则函数12logyfxx的零点个数是()A.5个B.4个C.3个D.2个【答案】D【解析】如图:函数fx与函数12loggxx有2个交点,所以选D.【例2】【2018河南漯河高中高三上学期二模】已知函数是上的偶函数,且,当时,,则函数的零点个数是()A.3B.4C.5D.6【答案】B6【例3】【2018辽宁庄河高中、沈阳二十中高三上学期第一次联考】函数820{1022sinxxfxfxx,则函数4loghxfxx的零点个数为()A.2个B.3个C.4个D.5个【答案】D114sin22sin22222fxfxxx;当32x时,22x,据此可得:112sin2sin22222fxfxxx;当54x时,55sin2144f,而445loglog414,则函数4logyx与函数fx在区间3,2上有2个交点,很明显,当32x时,函数图象没有交点,绘制函数图象如图所示,观察可得:函数4hxfxlogx的零点个数为5个.【名师点睛】函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不7同的值,就有几个不同的零点.【例4】【2018贵州黔东南州第一次联考】已知函数29,0{42,0xxxfxxx,若方程fxa有两个不相等的实数根,则实数a的取值范围是()A.59,2,24B.2,C.59,2,24D.59,2,24【答案】C【解析】作出函数29,0{42,0xxxfxxx的图象如下:【名师点睛】方程的根或函数有零点求参数范围常用方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一直角坐标系中,画出函数的图象,然后数形结合求解.【例5】【2018黑龙江海林模拟】设