常见弹簧类问题分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(21kx22-21kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=21kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1+m2)g/k2,而ml刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1+m2)·g/k2-m2g/k2=mlg/k2.此题若求ml移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1k2;A和B表示质量分别为mA和mB的两个小物块,mAmB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使().A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/mk2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为Tl,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡Tlcosθ=mg,Tlsinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=gtanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ,a=gsinθ(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为()A.MmB.M=mC.MmD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是()参考答案:CA.一直加速运动B.匀加速运动C.先加速运动后减速运动D.先减速运动后加速运动[解析]物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。物体向右运动至C点而静止,AC距离为L。第二次将物体与弹簧相连,仍将它压缩至A点,则第二次物体在停止运动前经过的总路程s可能为:A.s=LB.sLC.sLD.条件不足,无法判断参考答案:AC(建议从能量的角度、物块运动的情况考虑)10.A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42kg和0.40kg,弹簧的劲度系数k=100N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5m/s2的加速度竖直向上做匀加速运动(g=10m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程F对木块做的功.分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时,恰好分离.解:当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有kx=(mA+mB)gx=(mA+mB)g/k①对A施加F力,分析A、B受力如图对AF+N-mAg=mAa②对Bkx′-N-mBg=mBa′③可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值Fm,即Fm=mA(g+a)=4.41N又当N=0时,A、B开始分离,由③式知,此时,弹簧压缩量kx′=mB(a+g)x′=mB(a+g)/k④AB共同速度v2=2a(x-x′)⑤由题知,此过程弹性势能减少了WP=EP=0.248J设F力功WF,对这一过程应用动能定理或功能原理WF+EP-(mA+mB)g(x-x′)=21(mA+mB)v2⑥联立①④⑤⑥,且注意到EP=0.248J可知,WF=9.64×10-2J三、与能量相关的弹簧问题11.(全国.1997)质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x0,如图所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.分析:本题的解题关键是要求对物理过程做出仔细分析,且在每一过程中运用动量守恒定律,机械能守恒定律解决实际问题,本题的难点是对弹性势能的理解,并不要求写出弹性势能的具体表达式,可用Ep表示,但要求理解弹性势能的大小与伸长有关,弹簧伸长为零时,弹性势能为零,弹簧的伸长不变时,弹性势能不变.答案:021x12.如图所示,A、B、C三物块质量均为m,置于光滑水平台面上.B、C间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B分离,脱离弹簧后C的速度为v0.(1)求弹簧所释放的势能ΔE.(2)若更换B、C间的弹簧,当物块A以初速v向B运动,物块C在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C在脱离弹簧后的速度仍为2v0,A的初速度v应为多大?(1)31mv02(2)121m(v-6v0)2(3)4v013..某宇航员在太空站内做丁如下实验:选取两个质量分别为mA=0.1kg、mB=0.20kg的小球A、B和一根轻质短弹簧,弹簧的一端与小球A粘连,另一端与小球B接触而不粘连.现使小球A和B之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v0=0.10m/s做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动.从弹簧与小球B刚刚分离开始计时,经时间t=3.0s两球之间的距离增加了s=2.7m,求弹簧被锁定时的弹性势能E0?取A、B为系统,由动量守恒得:(mA+mB)v0=mAvA+mBv;VAt+VBt=s又A、B和弹簧构成系统,又动量守恒解得:JEp0275.014.如下图所示,一质量不计的轻质弹簧竖立在地面上,弹簧的上端与盒子A连接在一起,下端固定在地面上.盒子内装一个光滑小球,盒子内腔为正方体,一直径略小于此正方体边长的金属圆球B恰好能放在盒内,已知弹簧的劲度系数为k=400N/m,A和B的质2220212121BBBABAPvmvmVmmE)(量均为2kg将A向上提高,使弹簧从自由长度伸长10cm后,从静止释放,不计阻力,A和B一起做竖直方向的简谐振动,g取10m/s2已知弹簧处在弹性限度内,对于同一弹簧,其弹性势能只决定于其形变的大小.试求:(1)盒子A的振幅;(2)盒子A运动到最高点时,A对B的作用力方向;(3)小球B的最大速度15.如图所示,一弹簧振子.物块质量为m,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧处于伸状态,然后放手,当弹簧回到原长时物块速度为v1,当弹簧再次回到原长时物块速度为v2,求这两次为原长运动过程中弹簧的最大弹性势能.16.如图,水平弹簧一端固定,另一端系一质量为m的小球,弹簧的劲度系数为k,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O点,开始时小球位于O点右方的A点,O与A之间的距离为l0,从静止释放小球。1.为使小球能通过O点,而且只能通过O点一次,试问μ值应在什么范围?2.在上述条件下,小球在O点左方的停住点B点与O点的最大距离l1是多少?分析1、小球开始时在A点静止,初始动能为零;弹簧拉长lo,具有初始弹性势能kl02/2释放后,小球在弹性力作用下向左运动,克服摩擦力作功,总机械能减小.为使

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功