3.6带电粒子在匀强磁场中的运动(全)解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

带电粒子在匀强磁场中的运动判断下图中带电粒子(电量q,重力不计)所受洛伦兹力的大小和方向:-Bv+v×××××××××××××××××××××××××BF一、运动形式1、匀速直线运动。2、匀速圆周运动。亥姆霍兹线圈电子枪磁场强弱选择挡加速电压选择挡洛伦兹力演示器实验:②励磁线圈:作用是能在两线圈之间产生平行于两线圈中心的连线的匀强磁场①加速电场:作用是改变电子束出射的速度带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力就是它做圆周运动的向心力学生自己推导半径和周期表达式。rvmqv2BqBmvrvrT2BTqm2(3)粒子运动方向与磁场有一夹角(大于0度小于90度)轨迹为螺线一、带电粒子在无界匀强磁场中的运动F洛=0匀速直线运动F洛=Bqv匀速圆周运动F洛=Bqv⊥等距螺旋(0<θ<90°)V//BV⊥Bv与B成θ角mVRqB2mTqB在只有洛仑兹力的作用下带电粒子在汽泡室运动径迹的照片。有的粒子运动过程中能量降低,速度减小,径迹就呈螺旋形。例1:一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如下图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定A.粒子从a到b,带正电B.粒子从a到b,带负电C.粒子从b到a,带正电D.粒子从b到a,带负电C二、带电粒子在有界磁场中运动•1、找圆心:方法•2、定半径:•3、确定运动时间:Tt2qBmT2注意:θ用弧度表示几何法求半径向心力公式求半径利用v⊥R利用弦的中垂线确定带电粒子在磁场中运动轨迹的方法1、物理方法:作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。2、物理和几何方法:作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。3、几何方法:①圆周上任意两点连线的中垂线过圆心②圆周上两条切线夹角的平分线过圆心③过切点作切线的垂线过圆心入射角300时qBmqBmt3261入射角1500时qBmqBmt3526530°1.圆心在哪里?2.轨迹半径是多少?OBdv例3:r=d/sin30o=2dr=mv/qBt=(30o/360o)T=T/12T=2πm/qBT=2πr/v小结:rt/T=30o/360oA=30°vqvB=mv2/rt=T/12=πm/6qB3、偏转角=圆心角1、两洛伦兹力的交点即圆心2、偏转角:初末速度的夹角。4.穿透磁场的时间如何求?3、圆心角θ=?θt=T/12=πd/3vm=qBr/v=2qdB/vff例3、如图所示,在半径为r的圆形区域内,有一个匀强磁场,一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心,∠AOB=120°,求粒子在磁场区的偏转半径R及在磁场区中的运动时间。(粒子重力不计)rR60°30°r/R=tan30°o't=(60o/360o)T=T/6T=2πR/v030°rR30336vrTt入射角300时出射角也是300两个对称规律:粒子在有界磁场中做圆周运动的对称规律:1、从同一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、连心线)vrArvAvROθθ偏角:Rr2θtan经历时间:qBmθt对称性2、在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。例4、如图所示,在第一象限有磁感应强度为B的匀强磁场,一个质量为m,带电量为+q的粒子以速度v从O点射入磁场,θ角已知,求粒子在磁场中飞行的时间和飞离磁场的位置(粒子重力不计)例5、电视机的显像管中,电子束的偏转是用磁偏转技术实现的。电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示。磁场方向垂直于圆面。磁场区的中心为O,半径为r。当不加磁场时,电子束将通过O点而打到屏幕的中心M点。为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?例6:如图所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率V0垂直射入匀强磁场,入射方向与CD边界间夹角为θ。已知电子的质量为m,电量为e,为使电子能从磁场的另一侧EF射出,求电子的速率Vo至少多大?×××××××××××××××CDEFmeθVd(1)速度方向一定,大小不定。关键:画圆轨迹,寻找临界情形。三、临界问题V0θθo×××××××××××××××CDEF分析:当入射速率很小时,电子在磁场中转动一段圆弧后又从一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从射出,如图所示。电子恰好射出时,由几何知识可得:r+rcosθ=d①r=mv0Be②又解得V0=Bed(1+cosθ)m例7:长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是:()A.使粒子的速度vBqL/4mB.使粒子的速度v5BqL/4mC.使粒子的速度vBqL/mD.使粒子速度BqL/4mv5BqL/4m例题讲解例8、一匀强磁场宽度d=16cm,磁感应强度B=0.5T,电子源在A点以速度大小v=1.0×1010m/发射电子,在纸面内不同方向,从A点射入磁场(足够大)中,且在右侧边界处放一荧光屏(足够大),电子的比荷e/m=2×1011c/kg,求电子打中荧光屏的区域的长度?(2)速度大小一定,方向不定。AdBvABCRmvBev2解:R=10cm·····················②由题意得电子打到荧光屏上的区域为图中BC之间的区域:由几何关系BC=2AB·················③AB=·············④22)(RdR代入数据得:BC=16cm···········⑤oo1·····················①例9.如图11-3-1所示,真空室内有匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平行感光板ab,板面与磁场方向平行,在距ab的距离l=16cm处,有一个点状的α粒子发射源S,它向各个方向发射α粒子,α粒子的速度都是v=3.0×m/s.已知α粒子的电量与质量之比q/m=5.0×C/kg,现只考虑在纸平面中运动的α粒子,求ab上被α粒子打中的区域长度.ablS图11-3-1abcdrr2rSQP1P2M图11-3-2NP2由图中几何关系得:221)(rlrNP2224lrNP610710610例10、一匀强磁场,磁场方向垂直于xy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内。一个质量为m、电荷为q的带电粒子,由原点O开始运动,初速为v,方向沿x正方向。后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30º,P到O的距离为L,如图所示。不计重力的影响。求磁场的磁感强度B的大小和xy平面上磁场区域的半径R。求磁场区域关键在于定圆轨迹。四、求磁场区域问题五、带电粒子在复合场中的运动例11、如图所示,实线表示在竖直平面内的匀强电场的电场线,电场线与水平方向的夹角为α,水平方向的匀强磁场与电场线正交,有一带电液滴沿斜向上的虚线L做直线运动.L与水平方向的夹角为β,且αβ则下列说法中正确的是A.液滴一定做匀速直线运动B.液滴一定带正电C.电场线方向一定斜向上D.液滴也有可能做匀变速直线运动ABC例12、如图所示,质量是m的小球带有正电荷,电量为q,小球中间有一孔套在足够长的绝缘细杆上。杆与水平方向成θ角,与球的动摩擦因数为μ,此装置放在沿水平方向、磁感应强度为B的匀强磁场中。若从高处将小球无初速释放,求:小球下滑过程中加速度的最大值和运动速度的最大值。例13、如图所示,匀强电场的场强E=4V/m,方向水平向左匀强磁场的磁感强度B=2T,方向垂直于纸面向里,一个质量为m=1g、带正电的小物体A从M点沿绝缘粗糙的竖直壁无初速下滑,当它滑行h=0.8m到N点时离开壁做曲线运动,运动到P点时恰好处于平衡状态,此时速度方向与水平成450角,设P与M的高度差H=1.6m,求(1)A沿壁下滑过程中摩擦力作的功。(2)P与M的水平距离。例14、如图所示,水平放置的平行金属板AB间距为d,水平方向的匀强磁场为B。今有一带电粒子在AB间竖直平面内作半径为R的匀速圆周运动,则带电粒子转动方向为时针,速率为。例15、在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图9所示,若小球运动到A点时,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是()。A.小球仍做逆时针匀速圆周运动,半径不变B.小球仍做逆时针匀速圆周运动,半径减小C.小球做顺时针匀速圆周运动,半径不变D.小球做顺时针匀速圆周运动,半径减小ACD例16、如图所示,一个质量为m、带电量为q的正离子,在D处沿着图示的方向进入磁感应强度为B的匀强磁场,此磁场方向垂直纸面向里,结果离子正好从离开A点距离为d的小孔C沿垂直于AC的方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在B处,而B离A点距离为2d(AB⊥AC),不计粒子重力,离子运动轨迹始终在纸面内,求:(1)离子从D到B所需的时间(2)离子到达B处时的动能六、多种运动综合。D1、速度选择器如图,在平行板电容器中,电场强度E和磁感应强度B相互垂直。具有某一速度v的带电粒子将沿虚线通过不发生偏转,而其它速度的带电粒子将发生偏转。这种器件能把上述速度为v的粒子选择出来,所以叫速度选择器。试证明带电粒子具有的速度v=E/B,才能沿图示的虚线通过。七、几种实际应用例17:一个质量为m、电荷量为q的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上(图3.6-4)。⑴求粒子进入磁场时的速率。⑵求粒子在磁场中运动的轨道半径。质谱仪最初是由汤姆生的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在。现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具。2、质谱仪mq2vqUmv21SS221U可得:间,电场力做功获得能在qmU2B1rvqmvrrvmqv,v2可得:代入洛仑兹力提供向心力垂直进入磁场以速度BB可见半径不同意味着比荷不同,意味着它们是不同的粒子这就是质谱仪的工作原理(1)达到稳定状态时,导体板上侧面A的电势_____下侧面的电势(填高于、低于或等于)。(2)电子所受洛仑兹力的大小为______。(3)当导体板上下两侧之间的电势差为U时,电子所受静电力的大小为______。(4)由静电力和洛仑兹力平衡的条件,证明霍尔系数K=,其中n代表导体板单位体积中电子的个数。ne1低于BeVUe/h3、霍尔效应例18、如图,厚度为h,宽度为d的导体板放在垂直于它的磁感应强度为B的匀强磁场中,当电流通过导体时,在导体板的上侧面A和下侧面A′之间会产生电势差,这种现象称为霍尔效应。实验表明,当磁场不太强时,电势差为U,电流I和B的关系为U=KIB/d。式中的比例系数K为霍尔系数。设电流I是电子的定向移动形成的,电子的平均定向速度为v,电量为e,回答以下问题:IBdhI=neSv=nedhveU/h=evBU=IB/ned=kIB/dk是霍尔系数例19:实验用磁流体发电机,两极板间距d=20cm,磁场的磁感应强度B=5T,若接入额定功率P=100W的灯泡,正好正常发光,且灯泡正常发光时电阻R=100Ω,不计发电机内阻,求:①等离子体的流速为多大?②若等离子体均为一价离子,每秒钟有多少个什么性质的离子打在下极板?4、磁流体发电机5、电磁流量计例20、如

1 / 55
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功