[全套]高考数学总复习精品资料高中数学知识汇总

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

中学学科网学海泛舟系列资料上中学学科网,下精品学科资料中学学科网学海泛舟系列资料版权所有@中学学科网高考数学总复习精品资料高中数学知识汇总熟悉这些解题小结论,启迪解题思路、探求解题佳径,总结解题方法,防止解题易误点的产生,对提升高考数学成绩将会起到立竿见影的效果。一、集合与简易逻辑1.集合的元素具有无序性和互异性.2.对集合AB、,AB时,你是否注意到“极端”情况:A或B;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.3.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为,n2,12n,12n.22n4.“交的补等于补的并,即()UUUCABCACB”;“并的补等于补的交,即()UUUCABCACB”.5.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题”.8.充要条件二、函数1.指数式、对数式,mnmnaa,1mnmnaa,logaNaNlog(0,1,0)baaNNbaaN,.01a,log10a,log1aa,lg2lg51,loglnexx,logloglogcacbba,.loglogmnaanbbm.2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合A中的元素必有像,但第二个集合B中的元素不一定有原像(A中元素的像有且仅有下一个,但B中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集B的子集”.中学学科网学海泛舟系列资料上中学学科网,下精品学科资料中学学科网学海泛舟系列资料版权所有@中学学科网(2)函数图像与x轴垂线至多一个公共点,但与y轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.(4)原函数与反函数有两个“交叉关系”:自变量与因变量、定义域与值域.求一个函数的反函数,分三步:逆解、交换、定域(确定原函数的值域,并作为反函数的定义域).注意:①1()()fabfba,1[()]ffxx,1[()]ffxx,但11[()][()]ffxffx.②函数(1)yfx的反函数是1()1yfx,而不是1(1)yfx.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.单调函数的反函数和原函数有相同的性;如果奇函数有反函数,那么其反函数一定还是奇函数.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有:()()(||)fxfxfx.(2)若奇函数定义域中有0,则必有(0)0f.即0()fx的定义域时,(0)0f是()fx为奇函数的必要非充分条件.(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.(4)函数单调是函数有反函数的一个充分非必要条件.(5)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.(6)函数单调是函数有反函数的充分非必要条件,奇函数可能反函数,但偶函数只有()0({0})fxx有反函数;既奇又偶函数有无穷多个(()0fx,定义域是关于原点对称的任意一个数集).(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数xfy与函数xfy的图像关于直线0x(y轴)对称.推广一:如果函数xfy对于一切xR,都有faxfbx成立,那么xfy的图像关于直线2abx(由“x和的一半()()2axbxx确定”)对称.中学学科网学海泛舟系列资料上中学学科网,下精品学科资料中学学科网学海泛舟系列资料版权所有@中学学科网推广二:函数xafy,yfbx的图像关于直线2bax(由axbx确定)对称.(2)函数xfy与函数xfy的图像关于直线0y(x轴)对称.推广:函数xfy与函数yAfx的图像关于直线2Ay对称(由“y和的一半[()][()]2fxAfxy确定”).(3)函数xfy与函数yfx的图像关于坐标原点中心对称.推广:函数xfy与函数ymfnx的图像关于点(,)22nm中心对称.(4)函数xfy与函数1yfx的图像关于直线yx对称.推广:曲线(,)0fxy关于直线yxb的对称曲线是(,)0fybxb;曲线(,)0fxy关于直线yxb的对称曲线是(,)0fybxb.(5)曲线(,)0fxy绕原点逆时针旋转90,所得曲线是(,)0fyx(逆时针横变再交换).特别:()yfx绕原点逆时针旋转90,得()xfy,若()yfx有反函数1()yfx,则得1()yfx.曲线(,)0fxy绕原点顺时针旋转90,所得曲线是(,)0fyx(顺时针纵变再交换).特别:()yfx绕原点顺时针旋转90,得()xfy,若()yfx有反函数1()yfx,则得1()yfx.(6)类比“三角函数图像”得:若()yfx图像有两条对称轴,()xaxbab,则()yfx必是周期函数,且一周期为2||Tab.若()yfx图像有两个对称中心(,0),(,0)()AaBbab,则()yfx是周期函数,且一周期为2||Tab.如果函数()yfx的图像有下一个对称中心(,0)Aa和一条对称轴()xbab,则函数()yfx必是周期函数,且一周期为4||Tab.中学学科网学海泛舟系列资料上中学学科网,下精品学科资料中学学科网学海泛舟系列资料版权所有@中学学科网如果()yfx是R上的周期函数,且一个周期为T,那么()()()fxnTfxnZ.特别:若()()(0)fxafxa恒成立,则2Ta.若1()(0)()fxaafx恒成立,则2Ta.若1()(0)()fxaafx恒成立,则2Ta.如果()yfx是周期函数,那么()yfx的定义域“无界”.5.图像变换(1)函数图像的平移和伸缩变换应注意哪些问题?函数()yfx的图像按向量(,)akh平移后,得函数()yhfxk的图像.(2)函数图像的平移、伸缩变换中,图像的特殊点、特殊线也作相应的变换.(3)图像变换应重视将所研究函数与常见函数(正比例函数、反比例函数、一次函数、二次函数、对数函数、指数函数、三角函数、“鱼钩函数0kyxkx”及函数0kyxkx等)相互转化.注意:①形如2yaxbxc的函数,不一定是二次函数.②应特别重视“二次三项式”、“二次方程”、“二次函数”、“二次曲线”之间的特别联系.③形如(0,)axbycadbccxd的图像是等轴双曲线,双曲线两渐近线分别直线dxc(由分母为零确定)、直线ayc(由分子、分母中x的系数确定),双曲线的中心是点(,)dacc.三、数列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前n项和公式的关系:11,(1),(2)nnnSnaSSn(必要时请分类讨论).注意:112211()()()nnnnnaaaaaaaa;121121nnnnnaaaaaaaa.2.等差数列{}na中:中学学科网学海泛舟系列资料上中学学科网,下精品学科资料中学学科网学海泛舟系列资料版权所有@中学学科网(1)等差数列公差的取值与等差数列的单调性.(2)1(1)naand()manmd;pqmnpqmnaaaa.(3)1(1){}nkma、{}nka也成等差数列.(4)两等差数列对应项和(差)组成的新数列仍成等差数列.(5)1211,,mkkkmaaaaaa仍成等差数列.(6)1()2nnnaaS,1(1)2nnnSnad,21()22nddSnan,2121nnSan,()(21)nnnnAafnfnBb.(7),()0pqpqaqappqa;,()()pqpqSqSppqSpq;mnmnSSSmnd.(8)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n项和的最小值是所有非正项之和;(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列{}na中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(1)11nnaaqnmmaq;pqmnpqmnbbbb.(3){||}na、1(1){}nkma、{}nka成等比数列;{}{}nnab、成等比数列{}nnab成等比数列.(4)两等比数列对应项积(商)组成的新数列仍成等比数列.(5)1211,,mkkkmaaaaaa成等比数列.(6)111111(1)(1)(1)(1)(1)1111nnnnnaqnaqSaaaaqaqqqqqqqq.特别:123221()()nnnnnnnababaabababb.中学学科网学海泛舟系列资料上中学学科网,下精品学科资料中学学科网学海泛舟系列资料版权所有@中学学科网(7)mnmnmnnmSSqSSqS.(8)“首大于1”的正值递减等比数列中,前n项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前n项积的最小值是所有小于或等于1的项的积;(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.(10)并非任何两数总有等比中项.仅当实数,ab同号时,实数,ab存在等比中项.对同号两实数,ab的等比中项不仅存在,而且有一对Gab.也就是说,两实数要么没有等比中项(非

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功