立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力小学奥数篇(目录)一、攻克小学奥数的19种解题方法汇总二、奥数指导:小学奥数常用的解题方法三、小升初家长如何辅导孩子学习奥数四、家长如何培养孩子学习奥数的兴趣?五、快速提高奥数成绩的四个诀窍一、攻克小学奥数的19种解题方法汇总导读:随着小升初的激烈竞争,奥数也成了大家备受追捧的一门思维数学,那么如何学好奥数呢?下面赵老师为大家整理了攻克奥数的19种解题方法汇总,希望对大家有所帮助。攻克小学奥数19种例析解题方法解题方法1--分类解题方法2--化大为小找规律解题方法3--把未知量具体化解题方法4--试验解题方法5--移多补少解题方法6--等量代换解题方法7--画图解题方法8--反过来想解题方法9--分析因果关系解题方法10--假设解题方法11--转化立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力解题方法12--抓不变量解题方法13--找隐蔽条件解题方法14--整体看问题解题方法15--分情况讨论解题方法16--逐步调整解题方法17--合理变形解题方法18--用字母表示数解题方法19--借来还去攻克小学奥数19种例析解题方法解题方法1--分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。一共有线段4+3+2+1=10(条)。还可以把图中的线段按它们所包含基本线段的条数来分类。(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形?立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。1、11一种2、112、10二种3、113、103、9三种4、114、104、94、8四种5、115、105、95、85、7五种6、116、106、96、86、76、6六种7、117、107、97、87、7五种8、118、108、98、8四种9、119、109、9三种10、1110、10二种11、11一种1+2+3+4+5+6+5+4+3+2+1=36种解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。这就是解数学题常用的一种方法,叫做归纳,我们也可以叫做“化大为小找规律”。10条直线最多可把一个长方形分成多少块?提示:先不考虑10条直线,而是先看1条、2条、3条直线能把一个长方形分成几块?立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力10条直线最多可把一个长方形分成多少块?第一条直线:分成2块第二条直线:分成2+2=4块第三条直线:分成2+2+3=7块我们发现这样的规律:=2+(2+3+4+5+6+7+8+9+10)=2+54=56(块)这就是说,10条直线可把长方形分为56块。解题方法3--把未知量具体化一般情况下,题目中的未知量不可以随便假设。有时,问题中所求的未知量与其它相关的未知量具体是多少并没有关系。在这种情况下,可以把这些没有关系的未知量设为具体数。”在减法中,被减数、减数、差相加的和,除以被减数,所得的商是多少?幼儿园把一筐苹果平均分给大班和小班的小朋友,每个小朋友可分得6个。如果全部分给大班小朋友,那么平均每人可分10个。如果全部分给小班的小朋友,平均每人可分几个?全部分给小班的小朋友,每人可分几个,与苹果的总个数有关系,而与人数(无论是两班人数,还是大班人数)都没有关系。苹果总数=两班总人数×6苹果总数=大班人数×10所以,大班人数×10=两班总人数×6设两班100人大班100×6÷10=60人小班100-60=40人600÷40=15个解题方法4--试验立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力将一根长为374厘米的铝合金管截成若干根长36厘米和24厘米的短管。问剩余部分的管子最少是多少厘米?提示:从题目的问句看,应抓住“最少”二字来思考,先考虑没有剩余,再考虑剩余1厘米、2厘米……(1)如果把这根长管截成若干根两种不同规格的短管后没有剩余,那么374应该是4的倍数,因为两种短管的长度36厘米、24厘米都是4的倍数,但374不能被4整除,所以没有剩余不可能。(2)如果截成若干根两种不同规格的短管后只剩下1厘米,根据36、24都是偶数,“偶数的倍数是偶数”、“偶数与偶数的和是偶数”可推知,原来铝合金管长应为奇数,这与管长374(偶数)的条件矛盾,所以,剩1厘米也不可能。(3)如果最后剩下2厘米。这种情况有可能。374÷(36+24)=6……14。这说明两种都截6根余14厘米,这时需要调整:少截一根24厘米长的,加上14,24+14=36+2,正好合一根36厘米长的,还剩2厘米。解题方法5--移多补少在“平均”二字中,“平”就是“拉平”,也就是移多补少,“均”就是相等。“平均”二字的意思,通俗地说,就是用“移多补少”的办法,使每份数量都相等。因此,移多补少是我们解答求平均数应用题的重要思考方法。新光机器厂装配拖拉机,第一天装配50台,第二天比第一天多装配5台,第三、第四两天装配台数是第一天的2倍多3台,平均每天装配多少台?用四天装配总台数除以4,综合算式为:[50+(50+5)+(50×2+3)]÷4=52(台)采用移多补少的方法,假设每天都装配50台,那么四天一共多装配5+3=8(台),把这8台平均分成四份,8÷4=2(台),因此,平均每天装配50+2=52(台)综合算式为:50+(5+3)÷4=52(台)甲、乙、丙三人一起买了8个面包,平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没带钱,等吃完后一算,丙应该拿出4角钱,问甲应收回多少钱?(以分为单位)4角=40分40×3=120(分)120÷8=15(分)立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力15×5-40=35(分)解题方法6--等量代换“曹冲称象”是运用了“等量代换”的思考方法:两个完全相等的量,可以互相代换。解数学题,经常会用到这种思考方法。百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里。如果2个纸箱同1个木箱装的球鞋一样多,每个木箱和每个纸箱各装多少双球鞋?提示:我们根据“2个纸箱同一个木箱装的球鞋一样多”,把木箱换成纸箱,也就是说,把300双球鞋全部用纸箱装,不用木箱装。根据已知条件,2个木箱里的球鞋刚好装满4个纸箱,再加上原来已装好的6个纸箱,一共是10个纸箱。这样,题目就变为“把300双球鞋平均装在10个纸箱里,平均每个纸箱装多少双球鞋?”可以求出每个纸箱装多少双球鞋。也就能求出一个木箱装多少双球鞋。用两台水泵抽水,小水泵抽6小时,大水泵抽8小时,一共抽水312立方米。小水泵5小时的抽水量等于大水泵2小时的抽水量,两种水泵每小时各抽水多少立方米?5小=2大大换小:8÷2×5=20(时)小:312÷(20+6)=12(立方米)大:12×5÷2=30(立方米)解题方法7--画图在数学中,“数”与“形”就像一对形影不离的亲兄弟。几乎所有的数量关系或数学规律都可以用生动形象的示意图来反映。A、B、C、D与小青五位同学一起比赛象棋,每两人都要比赛一盘。到现在为止,A已经赛了4盘,B赛了3盘,C赛了2盘,D赛了1盘。问小青已经赛了几盘?A已经赛了4盘B赛了3盘C赛了2盘D赛了1盘小青已经赛了2盘立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力两堆煤,第一堆16吨,第二堆10吨,5天内两堆煤烧掉同样多吨数,这样第一堆剩下的煤正好是第二堆所剩煤的4倍。问5天中两堆煤被烧掉了多少吨?解题八反过来想当你按习惯思路解决问题困难时,不妨也反过来想想。反过来想,是我们解数学题的一种很好的方法。1.用淘汰制比赛从200名乒乓球选手中产生一名冠军,问应进行多少场比赛?淘汰199人需要比赛199场2.1至100的自然数中,不能被9整除的自然数的和是多少?从1至100的和中去掉9的倍数,就是不能被9整除的数的和了1+2+3+。。。+100=50509×(1+2+3+…+11)=5945050-594=4456解题方法9--分析因果关系分析,也就是抓住结果找原因。我们解数学题,也应当学会这种顺藤摸瓜,分析因果关系的本领。用一个杯子向一个空瓶里倒水。如果倒进3杯水,连瓶共重440克。如果倒进5杯水,连瓶共重600克。一杯水和一个空瓶各重多少?我们先把两次倒水的情况作一次比较。从连瓶重量来看,第二次比第一次重了立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力“600-440=160(克)”,怎么会多160克的呢?因为第二次比第一次多倒了“5-3=2(杯)”水。这样,我们就容易求出每杯水的重量为:160÷2=80(克)。空瓶重量600-80×5=200(克)这类应用题的一般思路:(1)先比较两种情形,从数量上看出差别;(2)分析造成这种数量差别的原因;(3)利用这种因果关系来沟通题目中已知量与未知量的关系,并求出正确答案。兴旺养猪场,如果每间猪圈养猪8头,就还有4头猪没有猪圈养;如果每间猪圈养猪10头,将空出2间猪圈。问这个养猪场有多少间猪圈?共养了多少头猪?(10×2+4)÷(10-8)=12(间)8×12+4=100(头)或10×12-10×2=100(头)解题方法10--假设小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得56分。小华答对了几题?假设小华全部答对:该得4×20=80(分),现在实际只得了56分,相差80-56=24(分),因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分(4+4=8),根据总共相差的分数以及做错一题相差的分数,就可以求出做错的数:24÷8=3(题),一共做20题,答错3题,答对的应该是:20-3=17(题)4×17=68(分)(答对的应得分)立足现在追求卓越卓越教育教研室奥数老师赵老师愿与数学爱好者分享教育心得为中国基础教育发展献微薄之力4×3=12(分)(答错的应扣分)68-12=56(分)(实际得分)某校有100名学生参加数学竞赛,平均得63分,其中男生平均得60分,女生平均得70分,那么,男生比女生多多少名?假设100名同学都是男生,那么应得分60×100=6000(分)比实际少得63×100-6000=300(分)原因是男生平均分比女生少70-60=10(分)求出女生人数为300÷10=30(名)解题方法11--转化数学题常用的也是十分重要的一种方法——转化。这种转化通常是指转化条件或问题,特别是转化题中的数量关系。两个数相除的商是21,余数是3。如果把被除数、除数、商和余数相加,它们的和是225。被除数、除数各是多少?题目中前一句话换个说法就是:被除数比除数的21倍还多3。再换个说