高中数学-排列组合13种方法精讲

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1排列组合1、分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法。2、分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法。3、排列及排列数:(1)排列:排列数:从n个不同元素中取出m个(m≤n)个元素的所有排列的个数,(2)排列数公式11mnnnAmn.全排列:4、组合及组合数:(1)组合:组合数:(2)\计算公式:.5、组合数的性质:1、捆绑与插空法:例1.8位同学排成一队,问:⑴甲乙必须相邻,有多少种排法?⑵甲乙不相邻,有多少种排法?⑶甲乙必须相邻且与丙不相邻,有多少种排法?⑷甲乙必须相邻,丙丁必须相邻,有多少种排法?⑸甲乙不相邻,丙丁不相邻,有多少种排法?例2.某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?例3.要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)2、定序问题缩倍法:例1.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)2例2.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种例3.从1,2,3,4,5五个数字当中任选3个组成一个三位数,其中十位比个位数字大的三位数共有多少个?3、标号排位问题分步法:例1.同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A、6种B、9种C、11种D、23种例2.将标有1,2,…10的10个小球投入同样标有1,2,…10的圆筒中,每个圆筒都不空,且所投小球与圆筒标号均不相同的投法共有多少种?4、有序分配问题逐分法:例1.有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有()种A.1260B.2025C.2520D.5040例2.12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()种A、4448412CCCB、44484123CCCC、3348412ACCD、334448412ACCC例3.有6本不同的书,按照以下要求处理,各有几种分法?(1)平均分给甲、乙、丙三人;(2)甲得一本,乙得两本,丙得三本.5、隔板法:例1.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?例2.求方程X+Y+Z=10的正整数解的个数例3.将10个相同的小球装入3个编号分别为1,2,3的盒子当中,每次将10个球装完,每个盒子里的球的个数都不小于盒子的编号数,则不同的装法共有多少种?36、多元问题分类法:例1.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A.210个B.300个C.464个D.600个例2.(1)从1,2,3,…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(2)从1,2,3,…,100这100个数中,任取两个数,使其和能被4整除的取法(不计顺序)共有多少种?7、至少问题间接法:例1.从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有()种A.140B.80C.70D.35例2.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长。现从中选5人主持某种活动,至少有一名队长当选的选法有多少种?8、匹配问题配对法:例1、从6双不同型号的鞋中任取4只,其中恰有两只配成一双的取法有多少种?例2、有111名选手参加乒乓球比赛,比赛采取单淘汰制,需要打多少场比赛才能产生冠军?9、选排问题先选后排法:例1、四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有_________种(用数字作答)例2、9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?例3、有6名男医生,4名女医生,从中选三名男医生和两名女医生到5个不同的地区巡回医疗,但规定男医生甲不能到地区A,共有多少种不同的分派方法?例4、从1到9的九个数字当中取出三个偶数四个奇数,试问:4(1)能组成多少个没有重复数字的七位数?(2)上述七位数当中三个偶数排在一起的有几个?(3)(1)中的七位数当中,偶数排在一起奇数也排在一起的有几个?10、多排问题单排法:例1、6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种例2、8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?11、交叉问题集合法:例1、从6名运动员中选出4名参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?例2、从7名运动员当中选出4人参加4×100米接力,求满足下列条件的安排方法数:(1)甲、乙二人都不跑中间两棒;(2)甲、乙二人不都跑中间两棒。12、圆排列:一般地,有m个元素作圆排列,其计算公式为(m—1)!=mm!例1、有五个小朋友,手拉手排成一个圆做游戏,求不同的排法数?例2、有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同战法?13、排除法:例1.从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_______条?例2.三行三列共九个点,以这些点为顶点可组成多少个三角形?5例3.正方体8个顶点中取出4个,可组成多少个四面体?例4.四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()A、150种B、147种C、144种D、141种排列组合课堂训练1、(2013四川,8,5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga-lgb的不同值的个数是()A.9B.10C.18D.202、(2012北京,6,5分)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.63、(2012浙江,6,5分)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种4、(2012山东,11,5分)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232B.252C.472D.4845、(2011全国,7,5分)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种6、(2010四川,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72B.96C.108D.14467、(2013北京,12,5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是.8、(2013浙江,14,4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).9、(2013重庆,13,5分)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是(用数字作答).10、(2013广东模拟,9)从甲、乙等6名同学中挑选3人参加某公益活动,要求甲、乙至少有1人参加,不同的挑选方法共有()A.16种B.20种C.24种D.120种11、(2013广东韶关二模,7)在实验员进行的一项实验中,先后要实施5个程序,其中程序A只能出现在第一步或最后一步,程序C和D实施时必须相邻,请问实验顺序的编排方法共有()A.15种B.18种C.24种D.44种12、(2013广东肇庆二模,8)已知集合A={1,2},B={6},C={2,4,7},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.3613、(2012广东深圳二模,4)在学校的一次演讲比赛中,高一、高二、高三分别有1名、2名、3名同学获奖,将这六名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有()A.6种B.36种C.72种D.120种14、(2012广东惠州二模,5)将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10B.20C.30D.4015、(2011广东广州一模,7)将18个参加青少年科技创新大赛的名额分配给3所学校,要求每校至少有一个名额且各校分配的名额互不相等,则不同的分配方法种数为()A.96B.114C.128D.13616、(2011广东茂名一模,5)现有12件商品摆放在货架上,摆成上层4件下层8件,现要从下层8件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是()A.420B.560C.840D.2016017、(2013广东华南师大附中,9)从0,1,2,3,4这5个数字中,任取3个组成三位数,其中奇数的个数是.18、(2013广东汕头一模,8)给一个正方体的六个面涂上四种不同颜色(红、黄、绿、蓝),要求相邻两个面涂不同的颜色,则共有涂色方法(涂色后,任意翻转正方体,能使正方体各面颜色一致,我们认为是同一种涂色方法)()A.6种B.12种C.24种D.48种719、(2011广东深圳二模,7)学校准备从5位报名同学中挑选3人,分别担任2011年世界大学生运动会田径、游泳和球类3个不同项目比赛的志愿者,已知同学甲不能担任游泳比赛的志愿者,则不同的安排方案共有()A.24种B.36种C.48种D.60种20、(2011广东肇庆二模,6)从6名学生中选4人分别从事A、B、C、D四项不同的工作,若甲,乙两人不能从事A工作,则不同的选派方案总数为()A.280B.240C.180D.9621、(2011广东湛江二模,1)有1000个形状相同的球,其中红球500个,黄球300个,绿球200个,采用按颜色分层抽样的方法随机抽取100个进行分析,则应抽取红球的个数为()A.20B.30C.50D.100排列组合强化训练1、书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法?2、将A、B、C、D、E、F这6个字母排成一排,若A、B、C必须按A在前,B居中,C在后的原则(A、B、C允许不相邻),有多少种不同的排法?

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功