数学物理方程与特殊函数第2章分离变量法四非齐次方程的解法求下列定解问题方程是非齐次的,是否可以用分离变量法?22222(,),0,0(0,)(,)0,0(,0)(,0)(),(),0uuafxtxlttxutulttuxuxxxxlt非齐次方程的求解思路•用分解原理得出对应的齐次问题•解出齐次问题•求出任意非齐次特解•叠加成非齐次解思考数学物理方程与特殊函数第2章分离变量法2222222222(,),0,0,(0,)(,)0,(0,)(,)0,0,(,0)(,0)(,0)(),()(,0)0,0,WWVVaafxtxlttxtxWtWltVtVlttWxVxWxxxVxxltt22222(,),0,0(0,)(,)0,0(,0)(,0)(),(),0uuafxtxlttxutulttuxuxxxxlt(,)(,)(,)uxtVxtWxt令:数学物理方程与特殊函数第2章分离变量法1()sinnnnVvtxl),(sin)(sin)(122221txfxlntvlnaxlntvnnnn1sin)(),(nnxlntftxfxxlntxfltflndsin),(2)(0112222sin)(sin)(nnnnxlntfxlntvlna0)()()(2222tftvlnatvnnn22222(,),0,0,(0,)(,)0,0,(,0)(,0)0,0,VVafxtxlttxVtVlttVxVxxlt令:为什么?数学物理方程与特殊函数第2章分离变量法1()sinnnnVvtxl0)()()(2222tftvlnatvnnn1(,0)(0)sin0nnnVxvxl1(,0)(0)sin0nnVxnvxtl0)0(nv0)0(nv)()(pVtvnn)()(pFtfnn)0()0()()(2nnnnvpvpVptv0)()()(22222pFpVlnapVpnnn)(1)(22222pFlnappVnnktkpksin22tlananllnapsin122222)(sin)(tftlananltvnnd)(sin)(0tlanfanltn)(2pVpn数学物理方程与特殊函数第2章分离变量法lxxutxtluxtutlxtxuatu0,0)0,(0,0),(),0(0,0sin222)()(),(tTxXtxuXTaXT2XXTaT2002TaTXX例15求下列定解问题解:先解对应的齐次问题2220,0(0,)(,)0,0(,0)0,0uuaxlttxutulttxxuxxl数学物理方程与特殊函数第2章分离变量法0202XXxxBeAeX0X0)0(BAXlleBeAlX)(0BA00XBAxX0BX0202XXxBxAXcossinlnn0)0(AX0sin)(lBlX,3,2,1,22nlnnnxlnBXnncos002TaTXX0)(,0)0(00lXXlxXX0)()(),(0)()0(),0(tTlXxtlutTXxtu数学物理方程与特殊函数第2章分离变量法lxxutxtluxtutlxtxuatu0,0)0,(0,0),(),0(0,0sin222,3,2,1,0,cosnxlnBXnn0cos)(nnxlntvutxlntvlnatvnnnsincos)()(022220nttvsin)(0ttvcos11)(00n0)()(2222tvlnatvnn0)0(nv0)(tvntucos110cos)0()0,(0nnxlnvxuCttvcos1)(0tlnanCetv2222)(数学物理方程与特殊函数第2章分离变量法lxtxuxuttlututlxtlaxlxuatu0,0)0,(,0)0,(0,0),(),0(0,02sin2sin22222)()(),(tTxXtxuTXaTX2TTaXX210XX02TaT0)()(),(0)()0(),0(tTlXtlutTXtu0)(,0)0(lXX0)(,0)0(0,0lXXlxXX例16求下列定解问题解:令数学物理方程与特殊函数第2章分离变量法lxtxuxuttlututlxtlaxlxuatu0,0)0,(,0)0,(0,0),(),0(0,02sin2sin222220)(,0)0(0,0lXXlxXX02xxBeAexX)(0)0(BAX0BA0)(xX()0llXlAeBe0BAxxX)(0BA0)(xX02xBxAxXsincos)(()sin0XlBl,3,2,1,/nlnn22/lnnnxlnBxXnnsin)(0)0(AX当当当02XX0X02XX时时时数学物理方程与特殊函数第2章分离变量法lxtxuxuttlututlxtlaxlxuatu0,0)0,(,0)0,(0,0),(),0(0,02sin2sin22222,3,2,1,/2nlnnxlnBxXnnsin)(0sin)(nnxlntvutlaxlxlntvlnatvnnn2sin2sinsin)()(122220sin)0()0,(0nnxlnvxu0sin)0()0,(0nnxlnvtxu0)0(nv0)0(nv2n0)()(2222tvlnatvnn0)(tvntlnaBtlnaAtvnsincos)(2ntlatvlatv2sin)(4)(22222数学物理方程与特殊函数第2章分离变量法lxtxuxuttlututlxtlaxlxuatu0,0)0,(,0)0,(0,0),(),0(0,02sin2sin222221()sinnnnuvtxl2n0)(tvn2ntlatvlatv2sin)(4)(22222ktkpksin22tlalapla2sin2222222)0()0()()(22222vpvpVptv)(2pVpn222222222224()()4aalpVpVpalpl2222222224142)(laplaplapVtlatlaaltv2sin2sin2)(2数学物理方程与特殊函数第2章分离变量法lxtxuxuttlututlxtlaxlxuatu0,0)0,(,0)0,(0,0),(),0(0,02sin2sin222220sin)(nnxlntvu2n0)(tvn2ntlatlaaltv2sin2sin2)(2d)(2sin2sin20tlalaaltd)2(2cos2cos40ttlatlaal)2cos2sin2(4tlattlaalalxltlattlaalalu2sin)2cos2sin2(4数学物理方程与特殊函数第2章分离变量法0|1,122222222yxuyxxyyuxu120),2()0(,),0(,0),1(20,1,2sin21112222uuuu)()(),(u01120112211020)2()0()2()0(20,0)()2()()0(例17求定解问题解:将原问题变换到极坐标系下:数学物理方程与特殊函数第2章分离变量法120),2()0(,),0(,0),1(20,1,2sin21112222uuuu)2()0(20,00202BeAe000AB00A02sincosBAnn,3,2,1,22nnnnnBnAnnnsincos数学物理方程与特殊函数第2章分离变量法120),2()0(,),0(,0),1(20,1,2sin21112222uuuu,3,2,1,0,2nnnnBnAnnnsincos0sin)(cos)(nnnnBnAu02222sincossin1cos1sincosnnnnnnnnBnnAnnBnAnBnA2sin2111222222uuu02222sin1cos1nnnnnnnnBnBBnAnAA2sin2120122nnnAnAA0122nnnBnBB2n222222141BBB数学物理方程与特殊函数第2章分离变量法120),2()0(,),0(,0),1(20,1,2sin21112222uuuu0sin)(cos)(nnnnBnAu0122nnnAnAA0122nnnBnBB2n222222141BBB0sin)1(cos)1(),1(0nnnnBnAu0)1()1(nnBA)0()0(nnBAln00DCnnnnDC0nA0nB2n4C241C2222214412CCC42414222