流体力学(刘鹤年)课后答案和过程

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1章绪论1.1解:339005.08.94410mkgmkggVGVm1.2解:3132hyhudydum当25.0hy时,此处的流速梯度为huhudydumm0583.1413231当50.0hy时,此处的流速梯度为huhudydumm8399.02132311.3解:NNAdyduAT1842.08.0001.0115.11.4解:充入内外筒间隙中的实验液体,在外筒的带动下做圆周运动。因间隙很小,速度可视为近似直线分布,不计内筒端面的影响,内桶剪切应力由牛顿内摩擦定律推得:)(0rudydu作用于内筒的扭矩:hrrArM22)(sPasPahrrM3219.4003.02.04.02.060102003.09.42221.5解:体积压缩系数:dpVdVmlPamlNmVdpdV8905.1)1011020(2001075.456210(负号表示体积减少)u油δωMud手轮转数:122.0418905.1422ddVn1.6解:1035.1%101%1512035.112,即2比1增加了3.5%。1.7解:测压管内液面超高:mmdhOH98.28.292mmdhHg05.15.10当测压管内液面标高为5.437m时,若箱内盛水,水箱液面高程为:mmm34402.5100098.2347.5若箱内盛水银,水箱液面高程为:mmm34805.5)100005.1(347.51.8解:当液体静止时,它所受到的单位质量力:gffffzyx,0,0,,。当封闭容器自由下落时,它所受到质量力除向下的重力G=mg外,还有与重力加速度方向相反(即向上)的惯性力F=-mg,所以0mmgmgmFGfz其单位质量力为0,0,0,,zyxffff1.9解:2222yxmrmF离心水平方向(法向)的单位质量力为:2222yxrmFf离心水平xmyxxyxmFx222222xmxmfx220AAryxxyxyz同理可求:yfy22/8.9smgmmgfz---则A点处单位质量力为:22242yxgf与水平方向夹角为:22242arcsinarcsinyxggfg1.10解:体积膨胀系数:dtVdVV33408.0801000051.0mmVdtdVV解法二:dtVdVV积分:TTVVVdtVdV000408.08000051.0ln00TTVVV30408.004164.100416.110100meeVVTTV所以,膨胀水箱的最小容积为:34164.0mV1.11答:运动粘度——TL2切应力——2LTM体积模量——MLT2表面张力系数——2TM动量p——TML功E——22TML1.12答:①uEvp2(欧拉数)②③QA23④Welv2(韦伯数)1.13解:由已知条件可将溢流堰过流时单宽流量q与堰顶水头H、水的密度ρ和重力加速度g的关系写成下面的一般表达式:HgKq其量纲公式:232312TLMLLTMLTL根据量纲一致性原则:M:0L:23T:12锅炉散热器解得:23210令2Km(即堰流流量系数),得堰流单宽流量计算公式:2302Hgmq1.14解:根据题意已知列出水泵输出功率N与有关的物理量的关系式:0,,,,HQgNf由于用瑞利法求力学方程,有关物理量不能超过4个,当有关物理量超过4个时,则需要归并有关物理量,令g写出指数乘积关系式:cbaHQKN写出量纲式:cbaHQN以基本量纲(M、L、T)表示各物理量量纲:cbaLTLTMLTML132232根据量纲和谐原理求量纲指数:M:a1L:cba322T:ba23得:1a,1b,1c整理方程:令K为试验确定的系数:gQHKQHKN1.15解:列出有关物理量的关系式:0,,,,,21ddpvf取v,2d,为基本量11121cbadvp,222212cbadvd,33323cbadv1:1112cbadvp111321cbaMLLLTTMLM:11cL:11131cbaT:12a得:1,0,2111cba,21vp同理可得:212dd3:3332cbadv解得:13a,13b,03c,23vd即:0,,2212vdddvpf1212221212Re,Re,,ddpvddvvdddfvp第2章流体静力学2.1解:相对压强:ghp333/0204.1051/100510.13008.93090mkgmkgghp2.2解:设小活塞顶部所受的来自杠杆的压力为F,则小活塞给杠杆的反力亦为F,对杠杆列力矩平衡方程:FabaT)(abaTF)(小活塞底部的压强为:22)(44adbaTdFp根据帕斯卡原理,p将等值的传递到液体当中各点,大活塞底部亦如此。222)(4adDbaTDpGcmcmbaTGadD28.28)7525(201000825)(222.3解:(1)atatkPapppa3469.19813213295227'(2)kPapppav257095'mgphvv55.28.925水柱高2.4解:2.5解:1-1为等压面:ghpgHpa0kPamNmNmNHhgppa94.100/100940/)2.15.1(8.91000/108.9)('22240kPap94.202.6解:kPagLpc45.230sin5.08.9sin2.7解:如图所示,过1、2、3点的水平面是等压面。)()()(322341121zzgzzgghpzzgghpBBAA)()()()(32212341zzgzzzzghhgppABBA)()()()(3221234141zzgzzzzgzzgρgh2ρgh1ρgh3ρgh2ρgh1h2h1h1h2h3(b)(a)BAABρg(h-h2)ρg(h+R)ρghρg(h-h2)ρgh1Rhh2h1h(d)(c)BAABhAA1234BhB310)3262(8.0)1862()3253(6.13)5318(8.9Pa80852.8解:ghghpghppBBAAghhhgpppBABA=ghhgp1=31036.08.96.13136.08.9=34.6528kPa2.9解:如图所示,A、B、C点水平面是等压面。)9.05.2()9.00.2()7.00.2()7.08.1(ggggpppAggp)6.13.1()1.11.1(gp)9.22.2(8.9)19.26.132.2(kPa796.2642.10解:对上支U形管:11ghghhHp所以1)()(hhHp(1)对下支U形管:221)(ghghhhHp221)(ghghhhHp(2)将(2)代入(1)得:212)(hhhp32124950405.264013600mkghhhp代入(2)得:212hhhhHpmm39.1435.2610040)1495013600(hAhBh水银B水A1mA2.5水0.70.9汞2.0a1.8pABCCD3z1zp1Ap2B2z2.11解:OmHgpA25.1405.0140OmHgpC28.1423.25.140OmHgpB25.45.04OmHgpgpBD25.42.12解:静水总压力:BLLLgP60sin2211kN4329.1035.15.260sin5.2228.9121或:mLLhC8146.260sin21kNAghPC4359.1035.25.18146.28.91合力作用点D距A点的距离:60sin60sin360sin260sin1111gLLgLgLLgLLLLDAm4103.10.25.20.25.20.220.235.25.2或:压力中心至闸门底边的距离:mmhhhhLe09.1)60sin5.460sin2(3)60sin5.460sin22(5.2)(3)2(2121=或:压力中心的位置:AyIyyCCxCDm4103.35.25.125.20.25.25.112125.20.23LL160°TAρgL1sin60.ρg(L1+L)sin60.PD0AM:60cosTLPLDAkNLPLTDA6969.11660cos5.24103.14359.10360cos2.13解:(1)求闸门所受的静水总压力P及力矩M对角式转动闸门铅垂边:静水总压力:)2(2)(2111111RHgBRBRHRHgPPxkN6.19)15.22(8.921作用点距O点的距离:BRHRHRBHRHHRHRe)2(3)23()(3)(21111111m4583.0)15.22(3125.23力矩:)23(6121111RHgBRePMmkN9833.8)25.23(8.961对角式转动闸门水平边:静水总压力:kNBgHRPPz5.2415.28.922作用点距O点的距离:mRe5.05.022力矩:mkNBgHRePM25.125.28.9212122222对整个角式转动闸门:静水总压力:kNPPPzx3753.315.246.1922力矩:mkNMMM2667.312(2)求当?2R时闸门所受的力矩M=0当21MM时,即22121)23(3HRRHR时,M=0mRHHRR8563.0)125.23(5.231)23(31212PP2e2R2RO1e11H2.14解:设阀门形心点的水深为hc阀门上受的静水总压力:24dghPcP的作用点距水面的斜长:AyIyyCCxCD2460sin460sinrhrhcccchrh460sin60sin2阀门上受的静水总力矩:)(CDyyPM)460sin4(422CChddgh)1660sin5.0(5.048.922CChhmkNmkN04.260260.02.15解:受力示意图:(1)水压力kNghPx490108.921212211

1 / 43
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功