第8章相量法重点:正弦量的相量表示相量法1.复数A表示形式:AbReIma0AbReIma0y|A|8-1复数jbaAyy||AeAAj2.复数运算A1±A2=(a1±a2)+j(b1±b2)(1)加减运算——直角坐标(2)乘除运算——极坐标212121yyAAAA22baAabtg1y一.正弦量的三要素:i(t)=Imsin(wt+y)i+_u8.2正弦量的基本概念(1)幅值(amplitude)(振幅、最大值)Im(2)角频率(angularfrequency)w(3)初相位(initialphaseangle)yyImwti波形图tiy0y=/20y=-/20iy0y=00二、同频率正弦量的相位差(phasedifference)。设u(t)=Umsin(wt+yu),i(t)=Imsin(wt+yi)相位差j=(wt+yu)-(wt+yi)=yu-yij0,u领先(超前)i,或i落后(滞后)uwtu,iuiyuyij0j0,i领先(超前)u,或u落后(滞后)i规定:|j|(180°)j=0,同相:j=(180o),反相:特殊相位关系:wtu,iui0wtu,iui0wtu,iui0j=90°u领先i90°或i落后u90°同样可比较两个电压或两个电流的相位差。例1计算下列两正弦量的相位差。)15π100sin(10)()30π100cos(10)()2(0201ttitti)2ππ100cos(10)()4π3π100cos(10)()1(21ttitti)45π200cos(10)()30π100cos(10)()3(0201ttuttu)30π100cos(3)()30π100cos(5)()4(0201ttitti解04π5)2π(4π3j4π3π24π5j000135)105(30j)105π100cos(10)(02tti不能比较相位差21ww000120)150(30j)150π100cos(3)(02tti两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。结论三.周期性电流、电压的有效值(effectivevalue)周期性电流、电压的瞬时值随时间而变,为了衡量其平均效果工程上采用有效值来表示。周期电流、电压有效值定义R直流IR交流ittiRWTd)(20TRIW2物理意义定义有效值也称方均根值(root-meen-square,简记为rms。)1.有效值(effectivevalue)TttiTI02defd)(1电压有效值TttuTU02defd)(12.正弦电流、电压的有效值设i(t)=Imsin(wt+y)ttITITd)(sin1022mywTtttttTTT2121d2)(2cos1d)(sin0002ywywIIIITITI2707.0221mmm2m)sin(2)sin()(mywywtItItiTttiTI02defd)(1注意:只适用正弦量复常数8.3.正弦量的相量表示复函数)tj(e2)(ywItA若对A(t)取实部:)(c2)](Re[ywtosItA)tj(e2)()(c2ywywItAtosIiA(t)还可以写成tItAwyjjee2)()sin(2j)cos(2ywywtItIteIwj2称为正弦量i(t)对应的相量。yII最大值复数有效值复数2IImimjmmIeIIiyy)cos(2)cos()(mywywtItItiyjmeIt1t2iy)t(jmi1eIyw)cos(2)(yywIItIti)cos(2)(yywUUtUtu正弦量的相量表示:相量的模表示正弦量的有效值相量的幅角表示正弦量的初相位已知例1.试用相量表示i,u。)V6014t311.1cos(3A)30314cos(4.141oouti解:V60220A30100ooUI例2.试写出电流的瞬时值表达式。解:A)15314cos(250oti.50HzA,1550ofI已知二.相量运算(1)同频率正弦量相加减)2(Re)cos(2)()2(R)cos(2)(j2222j1111tteUtUtueUetUtuwwywyw)()()(21tututuU21UUU得:)2(R)2(Rej2j1tteUeeUww)22(Rj2j1tteUeUeww))(2(Rj21teUUew1、线性性质21bfaff则21FbFaF例V)60314cos(24)(V)30314cos(26)(o21ttuttu同频正弦量的加、减运算可借助相量图进行。相量图在正弦稳态分析中有重要作用,尤其适用于定性分析。V604V306o2o1UUV)9.41314cos(267.9)()()(o21ttututu60430621UUUReIm301U9.41UReIm9.41301U602UU464.323196.5jj464.6196.7jV9.4167.9o602U2.正弦量的微分,积分运算IiIjdtdiwIjidtw1Ii]2Re[tjeIdtddtdiw证明:]2[RetjeIdtdw]2Re[tjejIwwtteIteItijjj2Red2Red三.相量法的应用求解正弦电流电路的稳态解(微分方程的特解)例)cos()(mutUtuyw一阶常系数线性微分方程Ri(t)u(t)L+-)()()(dttdiLtRitu解:用相量法求:jILIRUw)arctgcos(2222RLtLRUiuwywwLRUIwjRLLRURLLRUuuwy①把时域问题变为复数问题;②把微积分方程的运算变为复数方程运算;③可以把直流电路的分析方法直接用于交流电路。相量法的优点注意:相量法只适用于激励为同频正弦量的非时变线性电路。N线性N线性w1w2非线性w不适用8.4电路定理和电路元件的相量形式一.电阻)cos(2)(ywtIti已知)cos(2)()(ywtRItRituR则uR(t)i(t)R+-相量形式:yyRIUIIR有效值关系:UR=RI相位关系:u,i同相相量关系IRUR相量模型R+-RUIIU相量图wtiOuRpR频域有效值关系U=wLI相位关系u超前i90°ILUwjo90IIjwL相量模型+-UIUI相量图二.电感i(t)u(t)L+-时域模型时域tItiwsin2)()90sin(2cos2d)(d)(otILtILttiLtu波形图感抗的物理意义:(1)表示限制电流的能力;(2)感抗和频率成正比。wXLXL=U/I=wL=2fL,单位:欧感抗;,,;,0),(0开路短路直流LLXXwwU=wLI(3)由于感抗的存在使电流落后电压。iuLwIULw错误的写法频域有效值关系I=wCU相位关系i超前u90°UCIwjo90UU时域tUtuwsin2)()90sin(2cos2d)(d)(otCUtCUttuCti波形图二.电容时域模型i(t)u(t)C+-UI相量图相量模型IU+-Cjw1容抗的物理意义:(1)表示限制电流的能力;(2)容抗的绝对值和频率成反比。容抗;,0,;,),(0C旁路作用隔直作用直流CXXwwI=wCU(3)由于容抗的存在使电流领先电压。iuCw1IUCw1错误的写法CIUw1CXCw1定义wCX二.基尔霍夫定律的相量形式00)(00)(UtuIti一.电路元件的相量关系ICUtiCuILjUtiLuIRURiuwwj1d1ddj.5CCCIUw例1试判断下列表达式的正、误。Liu.1w005cos5.2tiwmmj.3CUIwLLL.4IUXLLj.6ILUwtiCudd.7UImUmmIUIUCwj1L下页上页返回例2已知电流表读数:A1=8A=6AA2A1A0Z1Z2UA2CXZRZj,.121若A0=?为何参数21,2.ZRZ=I0max=?A0为何参数2L1,j3.ZXZA0=I0min=?C2L1j,j.4XZXZ=?A2A0=A1解A10681.220IA14682.max02IRZ,1,IU2I0IA268,j3.min0C2IXZA16,A8,j.4210C2IIIXZA1A0Z1Z2UA2为何参数2L1,j3.ZXZA0=I0min=?CjXZXZ2L1,j.4=?A2A0=A1U2I1I2I例3)(:),5cos(2120)(tittu求已知解00120U20j54jjLXΩ10j02.051jjCX相量模型下页上页+_15u4H0.02FiUj20-j101I2I3II+_15返回A9.36106812681012011511200jjjjjA)9.365cos(210)(0tti下页上页CLCLRjjXUXURUIIIIUj20-j101I2I3II+_15返回例4)(:),1510cos(25)(06tuttiS求已知解0155IΩ5j102.0101jj66CX()V3022545251555j51550000CRSUUUR,UICU下页上页+_5uS0.2Fi相量模型+_5I-j5USU返回例5图示电路I1=I2=5A,U=50V,总电压与总电流同相位,求I、R、XC、XL。0CC0UU设解法15j,05201II045255j5I)j1(2505j)5j5(45500RXUL252505LLXXΩ2102502552505CXRR令等式两边实部等于实部,虚部等于虚部下页上页UjXC1I2I+_RIjXLUC+-返回U25ICRUU2I1I045LUV50LUU252550LX2105250CRX下页上页画相量图计算UjXC1I2I+_RIjXLUC+-解法2返回例6图示电路为阻容移项装置,如要求电容电压滞后与电源电压/3,问R、C应如何选择。IXIRUCSj解1CSCCCjj,jXRUXUXRUIS1jCSCRUUw画相量图计算360tan0CRwCRCIRIUUCRww/360tan0RUSUICU060上页UjXC+_RI+-CU解2返回